1
|
Vieira-Neto A, Lean IJ, Santos JEP. Periparturient Mineral Metabolism: Implications to Health and Productivity. Animals (Basel) 2024; 14:1232. [PMID: 38672379 PMCID: PMC11047658 DOI: 10.3390/ani14081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mineral metabolism, in particular Ca, and to a lesser extent phosphorus (P) and magnesium (Mg), is altered with the onset of lactation because of extensive irreversible loss to synthesize colostrum and milk. The transient reduction in the concentration of Ca in blood, particularly when it lasts days, increases the risk of mineral-related disorders such as hypocalcemia and, to a lesser extent, hypophosphatemia. Although the incidence of clinical hypocalcemia can be reduced by prepartum dietary interventions, subclinical hypocalcemia remains prevalent, affecting up to 60% of the dairy cows in the first 3 d postpartum. More importantly, strong associations exist between hypocalcemia and increased susceptibility to other peripartum diseases and impaired reproductive performance. Mechanistic experiments have demonstrated the role of Ca on innate immune response in dairy cows, which presumably predisposes them to other diseases. Hypocalcemia is not related to inadequate Ca intake as prepartum diets marginal to deficient in Ca reduce the risk of the disease. Therefore, the understanding of how Ca homeostasis is regulated, in particular how calciotropic hormones such as parathyroid hormone and 1,25-dihydroxyvitamin D3, affect blood Ca concentrations, gastrointestinal Ca absorption, bone remodeling, and renal excretion of Ca become critical to develop novel strategies to prevent mineral imbalances either by nutritional or pharmacological interventions. A common method to reduce the risk of hypocalcemia is the manipulation of the prepartum dietary cation-anion difference. Feeding acidogenic diets not only improves Ca homeostasis and reduces hypocalcemia, but also reduces the risk of uterine diseases and improves productive performance. Feeding diets that induce a negative Ca balance in the last weeks of gestation also reduce the risk of clinical hypocalcemia, and recent work shows that the incorporation of mineral sequestering agents, presumably by reducing the absorption of P and Ca prepartum, increases blood Ca at calving, although benefits to production and health remain to be shown. Alternative strategies to minimize subclinical hypocalcemia with the use of vitamin D metabolites either fed prepartum or as a pharmacological agent administered immediately after calving have shown promising results in reducing hypocalcemia and altering immune cell function, which might prove efficacious to prevent diseases in early lactation. This review summarizes the current understanding of Ca homeostasis around parturition, the limited knowledge of the exact mechanisms for gastrointestinal Ca absorption in bovine, the implications of hypocalcemia on the health of dairy cows, and discusses the methods to minimize the risk of hypocalcemia and their impacts on productive performance and health in dairy cows.
Collapse
Affiliation(s)
- Achilles Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Ian J. Lean
- Scibus, Camden, NSW 2570, Australia;
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - José Eduardo P. Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
- DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Just A, Mallmann RT, Grossmann S, Sleman F, Klugbauer N. Two-pore channel protein TPC1 is a determining factor for the adaptation of proximal tubular phosphate handling. Acta Physiol (Oxf) 2023; 237:e13914. [PMID: 36599408 DOI: 10.1111/apha.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/27/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
AIM Two-pore channels (TPCs) constitute a small family of cation channels expressed in endo-lysosomal compartments. TPCs have been characterized as critical elements controlling Ca2+ -mediated vesicular membrane fusion and thereby regulating endo-lysosomal vesicle trafficking. Exo- and endocytotic trafficking and lysosomal degradation are major mechanisms of adaption of epithelial transport. A prime example of highly regulated epithelial transport is the tubular system of the kidney. We therefore studied the localization of TPC protein 1 (TPC1) in the kidney and its functional role in the dynamic regulation of tubular transport. METHODS Immunohistochemistry in combination with tubular markers were used to investigate TPC1 expression in proximal and distal tubules. The excretion of phosphate and ammonium, as well as urine volume and pH were studied in vivo, in response to dynamic challenges induced by bolus injection of parathyroid hormone or acid-base transitions via consecutive infusion of NaCl, Na2 CO3 , and NH4 Cl. RESULTS In TPC1-deficient mice, the PTH-induced rise in phosphate excretion was prolonged and exaggerated, and its recovery delayed in comparison with wildtype littermates. In the acid-base transition experiment, TPC1-deficient mice showed an identical rise in phosphate excretion in response to Na2 CO3 compared with wildtypes, but a delayed NH4Cl-induced recovery. Ammonium-excretion decreased with Na2 CO3 , and increased with NH4 Cl, but without differences between genotypes. CONCLUSIONS We conclude that TPC1 is expressed subapically in the proximal but not distal tubule and plays an important role in the dynamic adaptation of proximal tubular phosphate reabsorption towards enhanced, but not reduced absorption.
Collapse
Affiliation(s)
- Armin Just
- Institut für Physiologie I, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Robert T Mallmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Sonja Grossmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Faten Sleman
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Norbert Klugbauer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation. Clin Exp Nephrol 2019; 23:898-907. [DOI: 10.1007/s10157-019-01725-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/01/2019] [Indexed: 11/26/2022]
|
4
|
Saurette M, Alexander RT. Intestinal phosphate absorption: The paracellular pathway predominates? Exp Biol Med (Maywood) 2019; 244:646-654. [PMID: 30764666 DOI: 10.1177/1535370219831220] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
IMPACT STATEMENT This review summarizes the work on transcellular intestinal phosphate absorption, arguing why this pathway is not the predominant pathway in humans consuming a "Western" diet. We then highlight the recent evidence which is strongly consistent with paracellular intestinal phosphate absorption mediating the bulk of intestinal phosphate absorption in humans.
Collapse
Affiliation(s)
- Matthew Saurette
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,2 The Women's & Children's Health Research Institute, Edmonton, Alberta T6G 1C9, Canada
| | - R Todd Alexander
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,2 The Women's & Children's Health Research Institute, Edmonton, Alberta T6G 1C9, Canada.,3 Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
5
|
Edwards A, Bonny O. A model of calcium transport and regulation in the proximal tubule. Am J Physiol Renal Physiol 2018; 315:F942-F953. [PMID: 29846115 PMCID: PMC6230728 DOI: 10.1152/ajprenal.00129.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The objective of this study was to examine theoretically how Ca2+ reabsorption in the proximal tubule (PT) is modulated by Na+ and water fluxes, parathyroid hormone (PTH), Na+-glucose cotransporter (SGLT2) inhibitors, and acetazolamide. We expanded a previously published mathematical model of water and solute transport in the rat PT (Layton AT, Vallon V, Edwards A. Am J Physiol Renal Physiol 308: F1343–F1357, 2015) that did not include Ca2+. Our results indicate that Ca2+ reabsorption in the PT is primarily driven by the transepithelial Ca2+ concentration gradient that stems from water reabsorption, which is itself coupled to Na+ reabsorption. Simulated variations in permeability or transporter activity elicit opposite changes in paracellular and transcellular Ca2+ fluxes, whereas a simulated decrease in filtration rate lowers both fluxes. The model predicts that PTH-mediated inhibition of the apical Na+/H+ exchanger NHE3 reduces Na+ and Ca2+ transport to a similar extent. It also suggests that acetazolamide- and SGLT2 inhibitor-induced calciuria at least partly stems from reduced Ca2+ reabsorption in the PT. In addition, backleak of phosphate (PO4) across tight junctions is predicted to reduce net PO4 reabsorption by ~20% under normal conditions. When transcellular PO4 transport is substantially reduced by PTH, paracellular PO4 flux is reversed and contributes significantly to PO4 reabsorption. Furthermore, PTH is predicted to exert an indirect impact on PO4 reabsorption via its inhibitory action on NHE3. This model thus provides greater insight into the mechanisms that modulate Ca2+ and PO4 reabsorption in the PT.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University , Boston, Massachusetts
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, and Service of Nephrology, Lausanne University Hospital , Lausanne , Switzerland
| |
Collapse
|
6
|
Lee JJ, Plain A, Beggs MR, Dimke H, Alexander RT. Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule. F1000Res 2017; 6:1797. [PMID: 29043081 PMCID: PMC5627579 DOI: 10.12688/f1000research.12097.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/17/2022] Open
Abstract
Calcium and phosphate are critical for a myriad of physiological and cellular processes within the organism. Consequently, plasma levels of calcium and phosphate are tightly regulated. This occurs through the combined effects of the phospho- and calciotropic hormones, parathyroid hormone (PTH), active vitamin D
3, and fibroblast growth factor 23 (FGF23). The organs central to this are the kidneys, intestine, and bone. In the kidney, the proximal tubule reabsorbs the majority of filtered calcium and phosphate, which amounts to more than 60% and 90%, respectively. The basic molecular mechanisms responsible for phosphate reclamation are well described, and emerging work is delineating the molecular identity of the paracellular shunt wherein calcium permeates the proximal tubular epithelium. Significant experimental work has delineated the molecular effects of PTH and FGF23 on these processes as well as their regulation of active vitamin D
3 synthesis in this nephron segment. The integrative effects of both phospho- and calciotropic hormones on proximal tubular solute transport and subsequently whole body calcium-phosphate balance thus have been further complicated. Here, we first review the molecular mechanisms of calcium and phosphate reabsorption from the proximal tubule and how they are influenced by the phospho- and calciotropic hormones acting on this segment and then consider the implications on both renal calcium and phosphate handling as well as whole body mineral balance.
Collapse
Affiliation(s)
- Justin J Lee
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Allein Plain
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada.,Department of Pediatrics, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Hemmi S, Matsumoto N, Jike T, Obana Y, Nakanishi Y, Soma M, Hemmi A. Proximal tubule morphology in rats with renal congestion: a study involving the in vivo cryotechnique. Med Mol Morphol 2014; 48:92-103. [DOI: 10.1007/s00795-014-0084-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/10/2014] [Indexed: 11/27/2022]
|
8
|
Biber J, Murer H, Mohebbi N, Wagner C. Renal Handling of Phosphate and Sulfate. Compr Physiol 2014; 4:771-92. [DOI: 10.1002/cphy.c120031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
The phosphate transporter NaPi-IIa determines the rapid renal adaptation to dietary phosphate intake in mouse irrespective of persistently high FGF23 levels. Pflugers Arch 2013; 465:1557-72. [PMID: 23708836 DOI: 10.1007/s00424-013-1298-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 05/03/2013] [Accepted: 05/13/2013] [Indexed: 01/13/2023]
Abstract
Renal reabsorption of inorganic phosphate (Pi) is mediated by the phosphate transporters NaPi-IIa, NaPi-IIc, and Pit-2 in the proximal tubule brush border membrane (BBM). Dietary Pi intake regulates these transporters; however, the contribution of the specific isoforms to the rapid and slow phase is not fully clarified. Moreover, the regulation of PTH and FGF23, two major phosphaturic hormones, during the adaptive phase has not been correlated. C57/BL6 and NaPi-IIa(-/-) mice received 5 days either 1.2 % (HPD) or 0.1 % (LPD) Pi-containing diets. Thereafter, some mice were acutely switched to LPD or HPD. Plasma Pi concentrations were similar under chronic diets, but lower when mice were acutely switched to LPD. Urinary Pi excretion was similar in C57/BL6 and NaPi-IIa(-/-) mice under HPD. During chronic LPD, NaPi-IIa(-/-) mice lost phosphate in urine compensated by higher intestinal Pi absorption. During the acute HPD-to-LPD switch, NaPi-IIa(-/-) mice exhibited a delayed decrease in urinary Pi excretion. PTH was acutely regulated by low dietary Pi intake. FGF23 did not respond to low Pi intake within 8 h whereas the phospho-adaptator protein FRS2α necessary for FGF-receptor cell signaling was downregulated. BBM Pi transport activity and NaPi-IIa but not NaPi-IIc and Pit-2 abundance acutely adapted to diets in C57/BL6 mice. In NaPi-IIa(-/-), Pi transport activity was low and did not adapt. Thus, NaPi-IIa mediates the fast adaptation to Pi intake and is upregulated during the adaptation to low Pi despite persistently high FGF23 levels. The sensitivity to FGF23 may be regulated by adapting FRS2α abundance and phosphorylation.
Collapse
|
10
|
Guo J, Song L, Liu M, Segawa H, Miyamoto KI, Bringhurst FR, Kronenberg HM, Jüppner H. Activation of a non-cAMP/PKA signaling pathway downstream of the PTH/PTHrP receptor is essential for a sustained hypophosphatemic response to PTH infusion in male mice. Endocrinology 2013; 154:1680-9. [PMID: 23515284 PMCID: PMC3628020 DOI: 10.1210/en.2012-2240] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PTH increases urinary Pi excretion by reducing expression of two renal cotransporters [NaPi-IIa (Npt2a) and NaPi-IIc (Npt2c)]. In contrast to acute transporter regulation that is cAMP/protein kinase A dependent, long-term effects require phospholipase C (PLC) signaling by the PTH/PTHrP receptor (PPR). To determine whether the latter pathway regulates Pi through Npt2a and/or Npt2c, wild-type mice (Wt) and animals expressing a mutant PPR incapable of PLC activation (DD) were tested in the absence of one (Npt2a(-/-) or Npt2c(-/-)) or both phosphate transporters (2a/2c-dko). PTH infusion for 8 days caused a rapid and persistent decrease in serum Pi in Wt mice, whereas serum Pi in DD mice fell only transiently for the first 2 days. Consistent with these findings, fractional Pi excretion index was increased initially in both animals, but this increase persisted only when the PPR Wt was present. The hypophosphatemic response to PTH infusion was impaired only slightly in PPR Wt/Npt2c(-/-) or DD/Npt2c(-/-) mice. Despite lower baselines, PTH infusion in PPR Wt/Npt2a(-/-) mice decreased serum Pi further, an effect that was attenuated in DD/Npt2a(-/-) mice. Continuous PTH had no effect on serum Pi in 2a/2c-dko mice. PTH administration increased serum 1,25 dihydroxyvitamin D3 levels in Wt and DD mice and increased levels above the elevated baseline with ablation of either but not of both transporters. Continuous PTH elevated serum fibroblast growth factor 23 and blood Ca(2+) equivalently in all groups of mice. Our data indicate that PLC signaling at the PPR contributes to the long-term effect of PTH on Pi homeostasis but not to the regulation of 1,25 dihydroxyvitamin D3, fibroblast growth factor 23, or blood Ca(2+).
Collapse
MESH Headings
- Animals
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Hypophosphatemia/chemically induced
- Hypophosphatemia/genetics
- Hypophosphatemia/metabolism
- Infusions, Intravenous
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation/physiology
- Parathyroid Hormone/administration & dosage
- Parathyroid Hormone/adverse effects
- Parathyroid Hormone/metabolism
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Parathyroid Hormone, Type 1/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism
- Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism
Collapse
Affiliation(s)
- Jun Guo
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|