1
|
Satur MJ, Urbanowicz PA, Spencer DIR, Rafferty J, Stafford GP. Structural and functional characterisation of a stable, broad-specificity multimeric sialidase from the oral pathogen Tannerella forsythia. Biochem J 2022; 479:1785-1806. [PMID: 35916484 PMCID: PMC9472817 DOI: 10.1042/bcj20220244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Sialidases are glycosyl hydrolase enzymes targeting the glycosidic bond between terminal sialic acids and underlying sugars. The NanH sialidase of Tannerella forsythia, one of the bacteria associated with severe periodontal disease plays a role in virulence. Here, we show that this broad-specificity enzyme (but higher affinity for α2,3 over α2,6 linked sialic acids) digests complex glycans but not those containing Neu5,9Ac. Furthermore, we show it to be a highly stable dimeric enzyme and present a thorough structural analysis of the native enzyme in its apo-form and in complex with a sialic acid analogue/ inhibitor (Oseltamivir). We also use non-catalytic (D237A) variant to characterise molecular interactions while in complex with the natural substrates 3- and 6-siallylactose. This dataset also reveals the NanH carbohydrate-binding module (CBM, CAZy CBM 93) has a novel fold made of antiparallel beta-strands. The catalytic domain structure contains novel features that include a non-prolyl cis-peptide and an uncommon arginine sidechain rotamer (R306) proximal to the active site. Via a mutagenesis programme, we identified key active site residues (D237, R212 and Y518) and probed the effects of mutation of residues in proximity to the glycosidic linkage within 2,3 and 2,6-linked substrates. These data revealed that mutagenesis of R306 and residues S235 and V236 adjacent to the acid-base catalyst D237 influence the linkage specificity preference of this bacterial sialidase, opening up possibilities for enzyme engineering for glycotechology applications and providing key structural information that for in silico design of specific inhibitors of this enzyme for the treatment of periodontitis.
Collapse
Affiliation(s)
- Marianne J. Satur
- School of Clinical Dentistry, The University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | | | | | - John Rafferty
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K
| | - Graham P. Stafford
- School of Clinical Dentistry, The University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| |
Collapse
|
2
|
Scott H, Davies GJ, Armstrong Z. The structure of Phocaeicola vulgatus sialic acid acetylesterase. Acta Crystallogr D Struct Biol 2022; 78:647-657. [PMID: 35503212 PMCID: PMC9063846 DOI: 10.1107/s2059798322003357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sialic acids terminate many N- and O-glycans and are widely distributed on cell surfaces. There are a diverse range of enzymes which interact with these sugars throughout the tree of life. They can act as receptors for influenza and specific betacoronaviruses in viral binding and their cleavage is important in virion release. Sialic acids are also exploited by both commensal and pathogenic bacteria for nutrient acquisition. A common modification of sialic acid is 9-O-acetylation, which can limit the action of sialidases. Some bacteria, including human endosymbionts, employ esterases to overcome this modification. However, few bacterial sialic acid 9-O-acetylesterases (9-O-SAEs) have been structurally characterized. Here, the crystal structure of a 9-O-SAE from Phocaeicola vulgatus (PvSAE) is reported. The structure of PvSAE was determined to resolutions of 1.44 and 2.06 Å using crystals from two different crystallization conditions. Structural characterization revealed PvSAE to be a dimer with an SGNH fold, named after the conserved sequence motif of this family, and a Ser-His-Asp catalytic triad. These structures also reveal flexibility in the most N-terminal α-helix, which provides a barrier to active-site accessibility. Biochemical assays also show that PvSAE deacetylates both mucin and the acetylated chromophore para-nitrophenyl acetate. This structural and biochemical characterization of PvSAE furthers the understanding of 9-O-SAEs and may aid in the discovery of small molecules targeting this class of enzyme.
Collapse
Affiliation(s)
- Hannah Scott
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Gideon J. Davies
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Zachary Armstrong
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
- Department of Bioorganic Synthesis, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
3
|
Genetic tools for the redirection of the central carbon flow towards the production of lactate in the human gut bacterium Phocaeicola (Bacteroides) vulgatus. Appl Microbiol Biotechnol 2022; 106:1211-1225. [PMID: 35080666 PMCID: PMC8816746 DOI: 10.1007/s00253-022-11777-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/26/2022]
Abstract
Species of the genera Bacteroides and Phocaeicola play an important role in the human colon. The organisms contribute to the degradation of complex heteropolysaccharides to small chain fatty acids, which are in part utilized by the human body. Furthermore, these organisms are involved in the synthesis of vitamins and other bioactive compounds. Of special interest is Phocaeicola vulgatus, originally classified as a Bacteroides species, due to its abundance in the human intestinal tract and its ability to degrade many plant-derived heteropolysaccharides. We analyzed different tools for the genetic modification of this microorganism, with respect to homologous gene expression of the ldh gene encoding a D-lactate dehydrogenase (LDH). Therefore, the ldh gene was cloned into the integration vector pMM656 and the shuttle vector pG106 for homologous gene expression in P. vulgatus. We determined the ldh copy number, transcript abundance, and the enzyme activity of the wild type and the mutants. The strain containing the shuttle vector showed an approx. 1500-fold increase in the ldh transcript concentration and an enhanced LDH activity that was about 200-fold higher compared to the parental strain. Overall, the proportion of lactate in the general catabolic carbon flow increased from 2.9% (wild type) to 28.5% in the LDH-overproducing mutant. This approach is a proof of concept, verifying the genetic accessibility of P. vulgatus and could form the basis for targeted genetic optimization. KEY POINTS: • A lactate dehydrogenase was overexpressed in Phocaeicola (Bacteroides) vulgatus. • The ldh transcript abundance and the LDH activity increased sharply in the mutant. • The proportion of lactate in the catabolic carbon flow increased to about 30%.
Collapse
|
4
|
Tegl G, Rahfeld P, Ostmann K, Hanson J, Withers SG. Discovery of β- N-acetylglucosaminidases from screening metagenomic libraries and their use as thioglycoligase mutants. Org Biomol Chem 2021; 19:9068-9075. [PMID: 34622263 DOI: 10.1039/d1ob01246k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-N-Acetylhexosaminidases (HexNAcases) are versatile biocatalysts that cleave terminal N-acetylhexosamine units from various glycoconjugates. Established strategies to generate glycoside-forming versions of the wild type enzymes rely on the mutation of their catalytic residues; however, successful examples of synthetically useful HexNAcase mutants are scarce. In order to expand the range of HexNAcases available as targets for enzyme engineering, we functionally screened a metagenomic library derived from a human gut microbiome. From a pool of hits, we characterized four of the more active candidates by sequence analysis and phylogenetic mapping, and found that they all belonged to CAZy family GH20. After detailed kinetic analysis and characterization of their substrate specificities, active site mutants were generated which resulted in the identification of two new thioglycoligases. BvHex E294A and AsHex E301A catalyzed glycosyl transfer to all three of the 3-, 4- and 6-thio-N-acetylglucosaminides (thio-GlcNAcs) that were tested. Both mutant enzymes also catalyzed glycosyl transfer to a cysteine-containing variant of the model peptide Tab1, with AsHex E301A also transferring GlcNAc onto a thiol-containing protein. This work illustrates how large scale functional screening of expressed gene libraries allows the relatively rapid development of useful new glycoside-forming mutants of HexNAcases, expanding the pool of biocatalysts for carbohydrate synthesis.
Collapse
Affiliation(s)
- Gregor Tegl
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Peter Rahfeld
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Katharina Ostmann
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - John Hanson
- Department of Chemistry, University of Puget Sound, Tacoma, USA
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
5
|
Tauzin AS, Pereira MR, Van Vliet LD, Colin PY, Laville E, Esque J, Laguerre S, Henrissat B, Terrapon N, Lombard V, Leclerc M, Doré J, Hollfelder F, Potocki-Veronese G. Investigating host-microbiome interactions by droplet based microfluidics. MICROBIOME 2020; 8:141. [PMID: 33004077 PMCID: PMC7531118 DOI: 10.1186/s40168-020-00911-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Despite the importance of the mucosal interface between microbiota and the host in gut homeostasis, little is known about the mechanisms of bacterial gut colonization, involving foraging for glycans produced by epithelial cells. The slow pace of progress toward understanding the underlying molecular mechanisms is largely due to the lack of efficient discovery tools, especially those targeting the uncultured fraction of the microbiota. RESULTS Here, we introduce an ultra-high-throughput metagenomic approach based on droplet microfluidics, to screen fosmid libraries. Thousands of bacterial genomes can be covered in 1 h of work, with less than ten micrograms of substrate. Applied to the screening of the mucosal microbiota for β-N-acetylgalactosaminidase activity, this approach allowed the identification of pathways involved in the degradation of human gangliosides and milk oligosaccharides, the structural homologs of intestinal mucin glycans. These pathways, whose prevalence is associated with inflammatory bowel diseases, could be the result of horizontal gene transfers with Bacteroides species. Such pathways represent novel targets to study the microbiota-host interactions in the context of inflammatory bowel diseases, in which the integrity of the mucosal barrier is impaired. CONCLUSION By compartmentalizing experiments inside microfluidic droplets, this method speeds up and miniaturizes by several orders of magnitude the screening process compared to conventional approaches, to capture entire metabolic pathways from metagenomic libraries. The method is compatible with all types of (meta)genomic libraries, and employs a commercially available flow cytometer instead of a custom-made sorting system to detect intracellular or extracellular enzyme activities. This versatile and generic workflow will accelerate experimental exploration campaigns in functional metagenomics and holobiomics studies, to further decipher host-microbiota relationships. Video Abstract.
Collapse
Affiliation(s)
- Alexandra S Tauzin
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Mariana Rangel Pereira
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- CAPES Foundation, Ministry of Education of Brazil, BrasÍlia, DF, 70040-020, Brazil
| | - Liisa D Van Vliet
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Drop-Tech, Canterbury Court, Cambridge, CB4 3QU, UK
| | - Pierre-Yves Colin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Elisabeth Laville
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Jeremy Esque
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Sandrine Laguerre
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Bernard Henrissat
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicolas Terrapon
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
| | - Vincent Lombard
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
| | - Marion Leclerc
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
| | - Joël Doré
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
- Metagenopolis, INRAE, F-78350, Jouy-en-Josas, France
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | | |
Collapse
|
6
|
Terrapon N, Lombard V, Drula É, Lapébie P, Al-Masaudi S, Gilbert HJ, Henrissat B. PULDB: the expanded database of Polysaccharide Utilization Loci. Nucleic Acids Res 2019; 46:D677-D683. [PMID: 29088389 PMCID: PMC5753385 DOI: 10.1093/nar/gkx1022] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
Abstract
The Polysaccharide Utilization Loci (PUL) database was launched in 2015 to present PUL predictions in ∼70 Bacteroidetes species isolated from the human gastrointestinal tract, as well as PULs derived from the experimental data reported in the literature. In 2018 PULDB offers access to 820 genomes, sampled from various environments and covering a much wider taxonomical range. A Krona dynamic chart was set up to facilitate browsing through taxonomy. Literature surveys now allows the presentation of the most recent (i) PUL repertoires deduced from RNAseq large-scale experiments, (ii) PULs that have been subjected to in-depth biochemical analysis and (iii) new Carbohydrate-Active enzyme (CAZyme) families that contributed to the refinement of PUL predictions. To improve PUL visualization and genome browsing, the previous annotation of genes encoding CAZymes, regulators, integrases and SusCD has now been expanded to include functionally relevant protein families whose genes are significantly found in the vicinity of PULs: sulfatases, proteases, ROK repressors, epimerases and ATP-Binding Cassette and Major Facilitator Superfamily transporters. To cope with cases where susCD may be absent due to incomplete assemblies/split PULs, we present ‘CAZyme cluster’ predictions. Finally, a PUL alignment tool, operating on the tagged families instead of amino-acid sequences, was integrated to retrieve PULs similar to a query of interest. The updated PULDB website is accessible at www.cazy.org/PULDB_new/
Collapse
Affiliation(s)
- Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Élodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Pascal Lapébie
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Saad Al-Masaudi
- Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Ndeh D, Gilbert HJ. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev 2018; 42:146-164. [PMID: 29325042 DOI: 10.1093/femsre/fuy002] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/06/2018] [Indexed: 12/21/2022] Open
Abstract
The human gut microbiota (HGM) makes an important contribution to health and disease. It is a complex microbial community of trillions of microbes with a majority of its members represented within two phyla, the Bacteroidetes and Firmicutes, although it also contains species of Actinobacteria and Proteobacteria. Reflecting its importance, the HGM is sometimes referred to as an 'organ' as it performs functions analogous to systemic tissues within the human host. The major nutrients available to the HGM are host and dietary complex carbohydrates. To utilise these nutrient sources, the HGM has developed elaborate, variable and sophisticated systems for the sensing, capture and utilisation of these glycans. Understanding nutrient acquisition by the HGM can thus provide mechanistic insights into the dynamics of this ecosystem, and how it impacts human health. Dietary nutrient sources include a wide variety of simple and complex plant and animal-derived glycans most of which are not degraded by enzymes in the digestive tract of the host. Here we review how various adaptive mechanisms that operate across the major phyla of the HGM contribute to glycan utilisation, focusing on the most complex carbohydrates presented to this ecosystem.
Collapse
Affiliation(s)
- Didier Ndeh
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
8
|
Reichenbach T, Kalyani D, Gandini R, Svartström O, Aspeborg H, Divne C. Structural and biochemical characterization of the Cutibacterium acnes exo-β-1,4-mannosidase that targets the N-glycan core of host glycoproteins. PLoS One 2018; 13:e0204703. [PMID: 30261037 PMCID: PMC6160142 DOI: 10.1371/journal.pone.0204703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Commensal and pathogenic bacteria have evolved efficient enzymatic pathways to feed on host carbohydrates, including protein-linked glycans. Most proteins of the human innate and adaptive immune system are glycoproteins where the glycan is critical for structural and functional integrity. Besides enabling nutrition, the degradation of host N-glycans serves as a means for bacteria to modulate the host's immune system by for instance removing N-glycans on immunoglobulin G. The commensal bacterium Cutibacterium acnes is a gram-positive natural bacterial species of the human skin microbiota. Under certain circumstances, C. acnes can cause pathogenic conditions, acne vulgaris, which typically affects 80% of adolescents, and can become critical for immunosuppressed transplant patients. Others have shown that C. acnes can degrade certain host O-glycans, however, no degradation pathway for host N-glycans has been proposed. To investigate this, we scanned the C. acnes genome and were able to identify a set of gene candidates consistent with a cytoplasmic N-glycan-degradation pathway of the canonical eukaryotic N-glycan core. We also found additional gene sequences containing secretion signals that are possible candidates for initial trimming on the extracellular side. Furthermore, one of the identified gene products of the cytoplasmic pathway, AEE72695, was produced and characterized, and found to be a functional, dimeric exo-β-1,4-mannosidase with activity on the β-1,4 glycosidic bond between the second N-acetylglucosamine and the first mannose residue in the canonical eukaryotic N-glycan core. These findings corroborate our model of the cytoplasmic part of a C. acnes N-glycan degradation pathway.
Collapse
Affiliation(s)
- Tom Reichenbach
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Dayanand Kalyani
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rosaria Gandini
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Olov Svartström
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Henrik Aspeborg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christina Divne
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
9
|
Wlodarska M, Luo C, Kolde R, d'Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA, Garner AL, Mohammadi S, O'Connell DJ, Abubucker S, Arthur TD, Franzosa EA, Huttenhower C, Murphy LO, Haiser HJ, Vlamakis H, Porter JA, Xavier RJ. Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation. Cell Host Microbe 2018; 22:25-37.e6. [PMID: 28704649 DOI: 10.1016/j.chom.2017.06.007] [Citation(s) in RCA: 569] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022]
Abstract
Host factors in the intestine help select for bacteria that promote health. Certain commensals can utilize mucins as an energy source, thus promoting their colonization. However, health conditions such as inflammatory bowel disease (IBD) are associated with a reduced mucus layer, potentially leading to dysbiosis associated with this disease. We characterize the capability of commensal species to cleave and transport mucin-associated monosaccharides and identify several Clostridiales members that utilize intestinal mucins. One such mucin utilizer, Peptostreptococcus russellii, reduces susceptibility to epithelial injury in mice. Several Peptostreptococcus species contain a gene cluster enabling production of the tryptophan metabolite indoleacrylic acid (IA), which promotes intestinal epithelial barrier function and mitigates inflammatory responses. Furthermore, metagenomic analysis of human stool samples reveals that the genetic capability of microbes to utilize mucins and metabolize tryptophan is diminished in IBD patients. Our data suggest that stimulating IA production could promote anti-inflammatory responses and have therapeutic benefits.
Collapse
Affiliation(s)
- Marta Wlodarska
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Chengwei Luo
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Raivo Kolde
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eva d'Hennezel
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - John W Annand
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Cortney E Heim
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Philipp Krastel
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Esther K Schmitt
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Abdifatah S Omar
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elizabeth A Creasey
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ashley L Garner
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sina Mohammadi
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | | | - Sahar Abubucker
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Timothy D Arthur
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric A Franzosa
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Curtis Huttenhower
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Leon O Murphy
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Henry J Haiser
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Hera Vlamakis
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey A Porter
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Yamamoto T, Ugai H, Nakayama-Imaohji H, Tada A, Elahi M, Houchi H, Kuwahara T. Characterization of a recombinant Bacteroides fragilis sialidase expressed in Escherichia coli. Anaerobe 2018; 50:69-75. [PMID: 29432848 DOI: 10.1016/j.anaerobe.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/09/2018] [Accepted: 02/06/2018] [Indexed: 12/17/2022]
Abstract
The human gut commensal Bacteroides fragilis produces sialidases that remove a terminal sialic acid from host-derived polysaccharides. Sialidase is considered to be involved in B. fragilis infection pathology. A native B. fragilis sialidase has been purified and characterized, and was shown to be post-translationally modified by glycosylation. However, the biochemical properties of recombinant B. fragilis sialidase expressed in a heterologous host remain uncharacterized. In this study, we examined the enzymatic properties of the 60-kDa sialidase NanH1 of B. fragilis YCH46, which was prepared as a recombinant protein (rNanH1) in Escherichia coli. In E. coli rNanH1 was expressed as inclusion bodies, which were separated from soluble proteins to allow solubilization of insoluble rNanH1 in a buffer containing 8 M urea and renaturation in refolding buffer containing 100 mM CaCl2 and 50 mM L-arginine. The specific activity of renatured rNanH1 measured using 4-methylumberiferyl-α-D-N-acetyl neuraminic acid as a substrate was 6.16 μmol/min/mg. The optimal pH of rNanH1 ranged from 5.0 to 5.5. The specific activity of rNanH1 was enhanced in the presence of calcium ions. rNanH1 preferentially hydrolyzed the sialyl α2,8 linkage and cleaved sialic acids from mucin and serum proteins (e.g., fetuin and transferrin) but not from α1-acid glycoprotein, which is similar to the previously observed biochemical properties for a native sialidase purified from B. fragilis SBT3182. The results and methods described in this study will be useful for preparing and characterizing recombinant proteins for other B. fragilis sialidase isoenzymes.
Collapse
Affiliation(s)
- Takaaki Yamamoto
- Department of Pharmacy, Kagawa University Hospital, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Hideyo Ugai
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Haruyuki Nakayama-Imaohji
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Ayano Tada
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Miad Elahi
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Hitoshi Houchi
- Department of Pharmacy, Kagawa University Hospital, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan.
| |
Collapse
|
11
|
Robinson LS, Lewis WG, Lewis AL. The sialate O-acetylesterase EstA from gut Bacteroidetes species enables sialidase-mediated cross-species foraging of 9- O-acetylated sialoglycans. J Biol Chem 2017; 292:11861-11872. [PMID: 28526748 PMCID: PMC5512079 DOI: 10.1074/jbc.m116.769232] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/18/2017] [Indexed: 12/16/2022] Open
Abstract
The gut harbors many symbiotic, commensal, and pathogenic microbes that break down and metabolize host carbohydrates. Sialic acids are prominent outermost carbohydrates on host glycoproteins called mucins and protect underlying glycan chains from enzymatic degradation. Sialidases produced by some members of the colonic microbiota can promote the expansion of several potential pathogens (e.g. Clostridium difficile, Salmonella, and Escherichia coli) that do not produce sialidases. O-Acetyl ester modifications of sialic acids help resist the action of many sialidases and are present at high levels in the mammalian colon. However, some gut bacteria, in turn, produce sialylate-O-acetylesterases to remove them. Here, we investigated O-acetyl ester removal and sialic acid degradation by Bacteroidetes sialate-O-acetylesterases and sialidases, respectively, and subsequent utilization of host sialic acids by both commensal and pathogenic E. coli strains. In vitro foraging studies demonstrated that sialidase-dependent E. coli growth on mucin is enabled by Bacteroides EstA, a sialate O-acetylesterase acting on glycosidically linked sialylate-O-acetylesterase substrates, particularly at neutral pH. Biochemical studies suggested that spontaneous migration of O-acetyl esters on the sialic acid side chain, which can occur at colonic pH, may serve as a switch controlling EstA-assisted sialic acid liberation. Specifically, EstA did not act on O-acetyl esters in their initial 7-position. However, following migration to the 9-position, glycans with O-acetyl esters became susceptible to the sequential actions of bacterial esterases and sialidases. We conclude that EstA specifically unlocks the nutritive potential of 9-O-acetylated mucus sialic acids for foraging by bacteria that otherwise are prevented from accessing this carbon source.
Collapse
Affiliation(s)
- Lloyd S Robinson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Warren G Lewis
- Department of Medicine, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110.
| | - Amanda L Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
12
|
Abstract
Sialidases are a large group of enzymes, the majority of which catalyses the cleavage of terminal sialic acids from complex carbohydrates on glycoproteins or glycolipids. In the gastrointestinal (GI) tract, sialic acid residues are mostly found in terminal location of mucins via α2-3/6 glycosidic linkages. Many enteric commensal and pathogenic bacteria can utilize sialic acids as a nutrient source, but not all express the sialidases that are required to release free sialic acid. Sialidases encoded by gut bacteria vary in terms of their substrate specificity and their enzymatic reaction. Most are hydrolytic sialidases, which release free sialic acid from sialylated substrates. However, there are also examples with transglycosylation activities. Recently, a third class of sialidases, intramolecular trans-sialidase (IT-sialidase), has been discovered in gut microbiota, releasing (2,7-anhydro-Neu5Ac) 2,7-anydro-N-acetylneuraminic acid instead of sialic acid. Reaction specificity varies, with hydrolytic sialidases demonstrating broad activity against α2,3-, α2,6- and α2,8-linked substrates, whereas IT-sialidases tend to be specific for α2,3-linked substrates. In this mini-review, we summarize the current knowledge on the structural and biochemical properties of sialidases involved in the interaction between gut bacteria and epithelial surfaces.
Collapse
|
13
|
Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat Commun 2015; 6:7624. [PMID: 26154892 PMCID: PMC4510645 DOI: 10.1038/ncomms8624] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal mucus layer is colonized by a dense community of microbes catabolizing dietary and host carbohydrates during their expansion in the gut. Alterations in mucosal carbohydrate availability impact on the composition of microbial species. Ruminococcus gnavus is a commensal anaerobe present in the gastrointestinal tract of >90% of humans and overrepresented in inflammatory bowel diseases (IBD). Using a combination of genomics, enzymology and crystallography, we show that the mucin-degrader R. gnavus ATCC 29149 strain produces an intramolecular trans-sialidase (IT-sialidase) that cleaves off terminal α2-3-linked sialic acid from glycoproteins, releasing 2,7-anhydro-Neu5Ac instead of sialic acid. Evidence of IT-sialidases in human metagenomes indicates that this enzyme occurs in healthy subjects but is more prevalent in IBD metagenomes. Our results uncover a previously unrecognized enzymatic activity in the gut microbiota, which may contribute to the adaptation of intestinal bacteria to the mucosal environment in health and disease. Mucosal sialoglycans contribute to host–microbe interactions at mucosal surfaces and impact bacterial colonization of the digestive system. Here the authors identify and characterize an intramolecular trans-sialidase produced by the gut bacterium R. gnavus ATCC 29149 that may contribute to adaptation to the mucosal environment.
Collapse
|
14
|
Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet 2015; 6:81. [PMID: 25852737 PMCID: PMC4365749 DOI: 10.3389/fgene.2015.00081] [Citation(s) in RCA: 552] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/16/2015] [Indexed: 12/21/2022] Open
Abstract
The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These core structures are further elongated and frequently modified by fucose and sialic acid sugar residues via α1,2/3/4 and α2,3/6 linkages, respectively. The ability to metabolize these mucin O-linked oligosaccharides is likely to be a key factor in determining which bacterial species colonize the mucosal surface. Due to their proximity to the immune system, mucin-degrading bacteria are in a prime location to influence the host response. However, despite the growing number of bacterial genome sequences available from mucin degraders, our knowledge on the structural requirements for mucin degradation by gut bacteria remains fragmented. This is largely due to the limited number of functionally characterized enzymes and the lack of studies correlating the specificity of these enzymes with the ability of the strain to degrade and utilize mucin and mucin glycans. This review focuses on recent findings unraveling the molecular strategies used by mucin-degrading bacteria to utilize host glycans, adapt to the mucosal environment, and influence human health.
Collapse
Affiliation(s)
| | | | | | - Nathalie Juge
- The Gut Health and Food Safety Institute Strategic Programme, Institute of Food ResearchNorwich, UK
| |
Collapse
|
15
|
Dupoiron S, Zischek C, Ligat L, Carbonne J, Boulanger A, Dugé de Bernonville T, Lautier M, Rival P, Arlat M, Jamet E, Lauber E, Albenne C. The N-Glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. J Biol Chem 2015; 290:6022-36. [PMID: 25586188 DOI: 10.1074/jbc.m114.624593] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Glycans are widely distributed in living organisms but represent only a small fraction of the carbohydrates found in plants. This probably explains why they have not previously been considered as substrates exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, possesses a specific system for GlcNAc utilization expressed during host plant infection. This system encompasses a cluster of eight genes (nixE to nixL) encoding glycoside hydrolases (GHs). In this paper, we have characterized the enzymatic activities of these GHs and demonstrated their involvement in sequential degradation of a plant N-glycan using a N-glycopeptide containing two GlcNAcs, three mannoses, one fucose, and one xylose (N2M3FX) as a substrate. The removal of the α-1,3-mannose by the α-mannosidase NixK (GH92) is a prerequisite for the subsequent action of the β-xylosidase NixI (GH3), which is involved in the cleavage of the β-1,2-xylose, followed by the α-mannosidase NixJ (GH125), which removes the α-1,6-mannose. These data, combined to the subcellular localization of the enzymes, allowed us to propose a model of N-glycopeptide processing by X. campestris pv. campestris. This study constitutes the first evidence suggesting N-glycan degradation by a plant pathogen, a feature shared with human pathogenic bacteria. Plant N-glycans should therefore be included in the repertoire of molecules putatively metabolized by phytopathogenic bacteria during their life cycle.
Collapse
Affiliation(s)
- Stéphanie Dupoiron
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Claudine Zischek
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Laetitia Ligat
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Julien Carbonne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Alice Boulanger
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Thomas Dugé de Bernonville
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Martine Lautier
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Pauline Rival
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France, INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Matthieu Arlat
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Elisabeth Jamet
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Emmanuelle Lauber
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Cécile Albenne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| |
Collapse
|
16
|
Efficient utilization of complex N-linked glycans is a selective advantage for Bacteroides fragilis in extraintestinal infections. Proc Natl Acad Sci U S A 2014; 111:12901-6. [PMID: 25139987 DOI: 10.1073/pnas.1407344111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteroides fragilis is the most common anaerobe isolated from clinical infections, and in this report we demonstrate a characteristic of the species that is critical to their success as an opportunistic pathogen. Among the Bacteroides spp. in the gut, B. fragilis has the unique ability of efficiently harvesting complex N-linked glycans from the glycoproteins common to serum and serous fluid. This activity is mediated by an outer membrane protein complex designated as Don. Using the abundant serum glycoprotein transferrin as a model, it has been shown that B. fragilis alone can rapidly and efficiently deglycosylate this protein in vitro and that transferrin glycans can provide the sole source of carbon and energy for growth in defined media. We then showed that transferrin deglycosylation occurs in vivo when B. fragilis is propagated in the rat tissue cage model of extraintestinal growth, and that this ability provides a competitive advantage in vivo over strains lacking the don locus.
Collapse
|
17
|
Structural and functional characterization of NanU, a novel high-affinity sialic acid-inducible binding protein of oral and gut-dwelling Bacteroidetes species. Biochem J 2014; 458:499-511. [PMID: 24351045 PMCID: PMC3969230 DOI: 10.1042/bj20131415] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many human-dwelling bacteria acquire sialic acid for growth or surface display. We identified previously a sialic acid utilization operon in Tannerella forsythia that includes a novel outer membrane sialic acid-transport system (NanOU), where NanO (neuraminate outer membrane permease) is a putative TonB-dependent receptor and NanU (extracellular neuraminate uptake protein) is a predicted SusD family protein. Using heterologous complementation of nanOU genes into an Escherichia coli strain devoid of outer membrane sialic acid permeases, we show that the nanOU system from the gut bacterium Bacteroides fragilis is functional and demonstrate its dependence on TonB for function. We also show that nanU is required for maximal function of the transport system and that it is expressed in a sialic acid-responsive manner. We also show its cellular localization to the outer membrane using fractionation and immunofluorescence experiments. Ligand-binding studies revealed high-affinity binding of sialic acid to NanU (Kd ~400 nM) from two Bacteroidetes species as well as binding of a range of sialic acid analogues. Determination of the crystal structure of NanU revealed a monomeric SusD-like structure containing a novel motif characterized by an extended kinked helix that might determine sugar-binding specificity. The results of the present study characterize the first bacterial extracellular sialic acid-binding protein and define a sialic acid-specific PUL (polysaccharide utilization locus).
Collapse
|
18
|
Nihira T, Suzuki E, Kitaoka M, Nishimoto M, Ohtsubo K, Nakai H. Discovery of β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans. J Biol Chem 2013; 288:27366-27374. [PMID: 23943617 DOI: 10.1074/jbc.m113.469080] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-D-mannosyl-N-acetyl-D-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-D-mannosyl-N-acetyl-D-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-D-mannose 1-phosphate and N-acetyl-D-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the D-mannose residue of β-1,4-D-mannosyl-N-acetyl-D-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine:phosphate α-D-mannosyltransferase as the systematic name and β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase as the short name for BT1033.
Collapse
Affiliation(s)
- Takanori Nihira
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Erika Suzuki
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Mamoru Nishimoto
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Ken'ichi Ohtsubo
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| |
Collapse
|
19
|
Stecher B, Berry D, Loy A. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol Rev 2013; 37:793-829. [PMID: 23662775 DOI: 10.1111/1574-6976.12024] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/14/2022] Open
Abstract
The highly diverse intestinal microbiota forms a structured community engaged in constant communication with itself and its host and is characterized by extensive ecological interactions. A key benefit that the microbiota affords its host is its ability to protect against infections in a process termed colonization resistance (CR), which remains insufficiently understood. In this review, we connect basic concepts of CR with new insights from recent years and highlight key technological advances in the field of microbial ecology. We present a selection of statistical and bioinformatics tools used to generate hypotheses about synergistic and antagonistic interactions in microbial ecosystems from metagenomic datasets. We emphasize the importance of experimentally testing these hypotheses and discuss the value of gnotobiotic mouse models for investigating specific aspects related to microbiota-host-pathogen interactions in a well-defined experimental system. We further introduce new developments in the area of single-cell analysis using fluorescence in situ hybridization in combination with metabolic stable isotope labeling technologies for studying the in vivo activities of complex community members. These approaches promise to yield novel insights into the mechanisms of CR and intestinal ecophysiology in general, and give researchers the means to experimentally test hypotheses in vivo at varying levels of biological and ecological complexity.
Collapse
Affiliation(s)
- Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | | | |
Collapse
|
20
|
Lewis WG, Robinson LS, Gilbert NM, Perry JC, Lewis AL. Degradation, foraging, and depletion of mucus sialoglycans by the vagina-adapted Actinobacterium Gardnerella vaginalis. J Biol Chem 2013; 288:12067-79. [PMID: 23479734 DOI: 10.1074/jbc.m113.453654] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bacterial vaginosis (BV) is a polymicrobial imbalance of the vaginal microbiota associated with reproductive infections, preterm birth, and other adverse health outcomes. Sialidase activity in vaginal fluids is diagnostic of BV and sialic acid-rich components of mucus have protective and immunological roles. However, whereas mucus degradation is believed to be important in the etiology and complications associated with BV, the role(s) of sialidases and the participation of individual bacterial species in the degradation of mucus barriers in BV have not been investigated. Here we demonstrate that the BV-associated bacterium Gardnerella vaginalis uses sialidase to break down and deplete sialic acid-containing mucus components in the vagina. Biochemical evidence using purified sialoglycan substrates supports a model in which 1) G. vaginalis extracellular sialidase hydrolyzes mucosal sialoglycans, 2) liberated sialic acid (N-acetylneuraminic acid) is transported into the bacterium, a process inhibited by excess N-glycolylneuraminic acid, and 3) sialic acid catabolism is initiated by an intracellular aldolase/lyase mechanism. G. vaginalis engaged in sialoglycan foraging in vitro, in the presence of human vaginal mucus, and in vivo, in a murine vaginal model, in each case leading to depletion of sialic acids. Comparison of sialic acid levels in human vaginal specimens also demonstrated significant depletion of mucus sialic acids in women with BV compared with women with a "normal" lactobacilli-dominated microbiota. Taken together, these studies show that G. vaginalis utilizes sialidase to support the degradation, foraging, and depletion of protective host mucus barriers, and that this process of mucus barrier degradation and depletion also occurs in the clinical setting of BV.
Collapse
Affiliation(s)
- Warren G Lewis
- Departments of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|