1
|
Khadraoui N, Essid R, Damergi B, Fares N, Gharbi D, Forero AM, Rodríguez J, Abid G, Kerekes EB, Limam F, Jiménez C, Tabbene O. Myrtus communis leaf compounds as novel inhibitors of quorum sensing-regulated virulence factors and biofilm formation: In vitro and in silico investigations. Biofilm 2024; 8:100205. [PMID: 38988475 PMCID: PMC11231753 DOI: 10.1016/j.bioflm.2024.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Antibiotic resistance of the Gram-negative bacterium Pseudomonas aeruginosa and its ability to form biofilm through the Quorum Sensing (QS) mechanism are important challenges in the control of infections caused by this pathogen. The extract of Myrtus communis (myrtle) showed strong anti-QS effect on C hromobacterium . violaceum 6267 by inhibiting 80 % of the production of violacein pigment at a sub-MIC concentration of 1/8 (31.25 μg/mL). In addition, the extract exhibited an inhibitory effect on virulence factors of P. aeruginosa PAO1 at half MIC (125 μg/mL), significantly reducing the formation of biofilms (72.02 %), the swarming activity (75 %), and the production of protease (61.83 %) and pyocyanin (97 %). The active fraction also downregulated the expression of selected regulatory genes involved in the biofilm formation and QS in the P. aeruginosa PAO1 strain. These genes included the autoinducer synthase genes (lasI and rhlI), the genes involved in the expression of their corresponding receptors (lasR and rhlR), and the pqsA genes. The analysis of the active fraction by HPLC/UV/MS and NMR allowed the identification of three phenolic compounds, 3,5-di-O-galloylquinic acid, myricetin 3-O-α-l-rhamnopyranoside (myricitrin), and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside. In silico studies showed that 3,5-di-O-galloylquinic acid, with an affinity score of -9.20 kcal/mol, had the highest affinity to the active site of the CviR protein (3QP8), a QS receptor from C. violaceum. Additionally, myricetin 3-O-α-l-rhamnopyranoside (myricitrin) and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside interact to a lesser extent with 3QP8. In conclusion, this study contributed significantly to the discovery of new QS inhibitors from M. communis leaves against resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Nadine Khadraoui
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Dorra Gharbi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Abel Mateo Forero
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre de Biotechnology de Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Erika-Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, Hungary
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Carlos Jiménez
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
2
|
Faskhutdinova E, Sukhikh A, Le V, Minina V, Khelef MEA, Loseva A. Effects of bioactive substances isolated from Siberian medicinal plants on the lifespan of Caenorhabditis elegans. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-2-544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Medicinal plants are sources of natural antioxidants. Acting as reducing agents, these substances protect the human body against oxidative stress and slow down the aging process. We aimed to study the effects of bioactive substances isolated from medicinal plants on the lifespan of Caenorhabditis elegans L. used as a model organism.
High-performance liquid chromatography was applied to isolate bioactive substances from the extracts of callus, suspension, and root cultures of meadowsweet (Filipendula ulmaria L.), ginkgo (Ginkgo biloba L.), Baikal skullcap (Scutellaria baicalensis L.), red clover (Trifolium pretense L.), alfalfa (Medicágo sativa L.), and thyme (Thymus vulgaris L.). Their effect on the lifespan of C. elegans nematodes was determined by counting live nematodes treated with their concentrations of 10, 50, 100, and 200 µmol/L after 61 days of the experiment. The results were recorded using IR spectrometry.
The isolated bioactive substances were at least 95% pure. We found that the studied concentrations of trans-cinnamic acid, baicalin, rutin, ursolic acid, and magniferin did not significantly increase the lifespan of the nematodes. Naringenin increased their lifespan by an average of 27.3% during days 8–26. Chlorogenic acid at a concentration of 100 µmol/L increased the lifespan of C. elegans by 27.7%. Ginkgo-based kaempferol and quercetin, as well as red clover-based biochanin A at the concentrations of 200, 10, and 100 µmol/L, respectively, increased the lifespan of the nematodes by 30.6, 41.9, and 45.2%, respectively.
The bioactive substances produced from callus, root, and suspension cultures of the above medicinal plants had a positive effect on the lifespan of C. elegans nematodes. This confirms their geroprotective properties and allows them to be used as anti-aging agents.
Collapse
|
3
|
Gadouche L, Zerrouki K, Zidane A, Ababou A, Bachir Elazaar I, Merabet D, Henniche W, Ikhlef S. Genoprotective, antimutagenic, and antioxidant effect of methanolic leaf extract of Rhamnus alaternus L. from the Bissa mountains in Algeria. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-2-530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rhamnus alaternus L. is a Rhamnaceae shrub and a popular traditional medicine in Algeria. The present research objective was to investigate the antioxidant, genotoxic, and antigenotoxic properties of R. alaternus methanolic leaf extract.
Antiradical scavenging activity was tested by α, α-diphenyl-β-picrylhydrazyl free radical scavenging and β-carotene bleaching method. DNA damage and repair were measured by the Allium cepa test with sodium azide as a mutagenic agent. Mitotic index and chromosomal aberrations were calculated by microscopy of meristem roots stained with 2% carmine acetic.
The methanolic extract of R. alaternus leaves inhibited the free radical DPPH (IC50 = 0.74 ± 0.3 mg/mL) and prevented the oxidation of β-carotene (50.71 ± 4.17%). The root phenotyping showed that sodium azide changed their color and shape, decreased their stiffness, and significantly reduced their length. The roots treated with both R. alaternus leaf extract and sodium azide demonstrated a better root growth. The roots treated with the methanolic extract were much longer than the control roots (P < 0.001). The microscopy images of root meristem treated with the sodium azide mitodepressant agent showed significant chromosomal aberrations, which indicated a disruption of the cell cycle.
The R. alaternus leaf extract appeared to have a beneficial effect on cytotoxicity. The antioxidant properties of R. alaternus L. makes this plant an excellent genoportector.
Collapse
|
4
|
Lerma-Herrera MA, Beiza-Granados L, Ochoa-Zarzosa A, López-Meza JE, Navarro-Santos P, Herrera-Bucio R, Aviña-Verduzco J, García-Gutiérrez HA. Biological Activities of Organic Extracts of the Genus Aristolochia: A Review from 2005 to 2021. Molecules 2022; 27:molecules27123937. [PMID: 35745061 PMCID: PMC9230106 DOI: 10.3390/molecules27123937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/05/2023] Open
Abstract
Different ethnomedicinal studies have investigated the relationship between various phytochemicals as well as organic extracts and their bioactive aspects. Studies on biological effects are attributed to secondary metabolites such as alkaloids, phenolic compounds, and terpenes. Since there have been no reviews in the literature on the traditional, phytochemical, and ethnomedicinal uses of the genus Aristolochia so far, this article systematically reviews 141 published studies that analyze the associations between secondary metabolites present in organic extracts and their beneficial effects. Most studies found associations between individual secondary metabolites and beneficial effects such as anticancer activity, antibacterial, antioxidant activity, snake anti-venom and anti-inflammatory activity. The aim of this review was to analyze studies carried out in the period 2005-2021 to update the existing knowledge on different species of the genus Aristolochia for ethnomedicinal uses, as well as pharmacological aspects and therapeutic uses.
Collapse
Affiliation(s)
- Martín A. Lerma-Herrera
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (L.B.-G.); (R.H.-B.); (J.A.-V.)
- Correspondence: (M.A.L.-H.); (H.A.G.-G.)
| | - Lidia Beiza-Granados
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (L.B.-G.); (R.H.-B.); (J.A.-V.)
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Michoacán, Mexico; (A.O.-Z.); (J.E.L.-M.)
| | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Michoacán, Mexico; (A.O.-Z.); (J.E.L.-M.)
| | - Pedro Navarro-Santos
- CONACYT—Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-1, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico;
| | - Rafael Herrera-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (L.B.-G.); (R.H.-B.); (J.A.-V.)
| | - Judit Aviña-Verduzco
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (L.B.-G.); (R.H.-B.); (J.A.-V.)
| | - Hugo A. García-Gutiérrez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (L.B.-G.); (R.H.-B.); (J.A.-V.)
- Correspondence: (M.A.L.-H.); (H.A.G.-G.)
| |
Collapse
|