1
|
O'Flaherty C. Redox signaling regulation in human spermatozoa: a primary role of peroxiredoxins. Asian J Androl 2025:00129336-990000000-00281. [PMID: 39902615 DOI: 10.4103/aja2024126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
ABSTRACT Reactive oxygen species (ROS) play a dual role in mammalian spermatozoa. At high levels, they are detrimental to sperm function since they can promote oxidative stress that produces oxidation of protein, lipids, and sperm DNA. This oxidative damage is associated with male infertility. On the other hand, when ROS are produced at low levels, they participate in the redox signaling necessary for sperm capacitation. Capacitation-associated ROS are produced by the sperm oxidase, whose identity is still elusive, located in the plasma membrane of the spermatozoon. ROS, such as superoxide anion, hydrogen peroxide, nitric oxide, and peroxynitrite, activate protein kinases and inactivate protein phosphatases with the net increase of specific phosphorylation events. Peroxiredoxins (PRDXs), antioxidant enzymes that fight against oxidative stress, regulate redox signaling during capacitation. Among them, PRDX6, which possesses peroxidase and calcium-independent phospholipase A2 (iPLA2) activities, is the primary regulator of redox signaling and the antioxidant response in human spermatozoa. The lysophosphatidic acid signaling is essential to maintain sperm viability by activating the phosphatidylinositol 3-kinase/protein kinase (PI3K/AKT) pathway, and it is regulated by PRDX6 iPLA2, protein kinase C (PKC), and receptor-type protein tyrosine kinase. The understanding of redox signaling is crucial to pave the way for novel diagnostic tools and treatments of male infertility.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Department of Surgery (Urology Division), Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3G 1Y6, Canada
- The Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
2
|
Cui X, Cai X, Zhang F, Zhang W, Liu H, Mu S, Guo S, Wan H, Zhang H, Zhang Z, Kang X. Comparative Proteomics Elucidates the Potential Mechanism of Sperm Capacitation of Chinese Mitten Crabs ( Eriocheir sinensis). J Proteome Res 2024; 23:1603-1614. [PMID: 38557073 DOI: 10.1021/acs.jproteome.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Sperm capacitation is broadly defined as a suite of biochemical and biophysical changes resulting from the acquisition of fertilization ability. To gain insights into the regulation mechanism of crustacean sperm capacitation, 4D label-free quantitative proteomics was first applied to analyze the changes of sperm in Eriocheir sinensis under three sequential physiological conditions: seminal vesicles (X2), hatched with the seminal receptacle content (X3), and incubated with egg water (X5). In total, 1536 proteins were identified, among which 880 proteins were quantified, with 82 and 224 proteins significantly altered after incubation with the seminal receptacle contents and egg water. Most differentially expressed proteins were attributed to biological processes by Gene Ontology annotation analysis. As the fundamental bioenergetic metabolism of sperm, the oxidative phosphorylation, glycolysis, and the pentose phosphate pathway presented significant changes under the treatment of seminal receptacle contents, indicating intensive regulation for sperm in the seminal receptacle. Additionally, the seminal receptacle contents also significantly increased the oxidation level of sperm, whereas the enhancement of abundance in superoxide dismutase, peroxiredoxin 1, and glutathione S-transferase after incubation with egg water significantly improved the resistance against oxidation. These results provided a new perspective for reproduction studies in crustaceans.
Collapse
Affiliation(s)
- Xiaodong Cui
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Xueqian Cai
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Fenghao Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Weiwei Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Huan Liu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Haifu Wan
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Han Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Zhaohui Zhang
- Department of Reproductive Medicine, Baoding First Central Hospital, Baoding 071000, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding 071000, China
| |
Collapse
|
3
|
Muñoz E, Fuentes F, Felmer R, Arias ME, Yeste M. Effects of Reactive Oxygen and Nitrogen Species on Male Fertility. Antioxid Redox Signal 2024; 40:802-836. [PMID: 38019089 DOI: 10.1089/ars.2022.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: In recent decades, male fertility has been severely reduced worldwide. The causes underlying this decline are multifactorial, and include, among others, genetic alterations, changes in the microbiome, and the impact of environmental pollutants. Such factors can dysregulate the physiological levels of reactive species of oxygen (ROS) and nitrogen (RNS) in the patient, generating oxidative and nitrosative stress that impairs fertility. Recent Advances: Recent studies have delved into other factors involved in the dysregulation of ROS and RNS levels, such as diet, obesity, persistent infections, environmental pollutants, and gut microbiota, thus leading to new strategies to solve male fertility problems, such as consuming prebiotics to regulate gut flora or treating psychological conditions. Critical Issues: The pathways where ROS or RNS may be involved as modulators are still under investigation. Moreover, the extent to which treatments can rescue male infertility as well as whether they may have side effects remains, in most cases, to be elucidated. For example, it is known that prescription of antioxidants to treat nitrosative stress can alter sperm chromatin condensation, which makes DNA more exposed to ROS and RNS, and may thus affect fertilization and early embryo development. Future Directions: The involvement of extracellular vesicles, which might play a crucial role in cell communication during spermatogenesis and epididymal maturation, and the relevance of other factors such as sperm epigenetic signatures should be envisaged in the future.
Collapse
Affiliation(s)
- Erwin Muñoz
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
4
|
Lv C, Larbi A, Li C, Liang J, Wu G, Shao Q, Quan Q. Decoding the influence of semen collection processes on goat sperm quality from a perspective of seminal plasma proteomics. J Proteomics 2024; 298:105141. [PMID: 38408605 DOI: 10.1016/j.jprot.2024.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
This study aims to assess the impact of semen collection methods on goat semen quality and seminal plasma (SP) proteomes. Semen was collected by artificial vagina (AV) or electro-ejaculator (EE) and semen parameters were evaluated. Tandem mass tag coupled with liquid chromatography-tandem mass spectrometry was used to screen SP differentially abundant proteins (DAPs) between EE and AV. PRM was used to confirm the reliability of the data. In contrast to EE, a lower volume, higher progressive motility and concentration were observed in AV. No differences were found in total motility, membrane integrity, acrosome integrity, and ROS production between EE and AV. In total, 1692 proteins were identified in SP, including 210 DAPs. Among them, 120 and 90 proteins were down-regulated and up-regulated in AV compared to EE, respectively. The GO annotation showed that DAPs are mainly localized in the membrane, involved in deference responses to bacterium, RNA processing, and related to oxidoreductase activity. KEGG demonstrated tight associations of DAPs with specific amino acids, carbon metabolism, citrate cycle, and propanoate metabolism. In conclusion, this study provides valuable insights into the effects of semen collection on goat semen quality and explores the potential action mechanism based on the modification of SP proteomes. SIGNIFICANCE OF THE STUDY: The quality of fresh semen directly influences the results of artificial insemination and semen cryopreservation in livestock. This study represents the first attempt to evaluate the impact of semen collection methods including electroejaculation and artificial vagina on sperm quality and seminal plasma proteomes in goat. The results of this study demonstrated that semen collection methods directly impacted the quality of goat semen. Then, the proteomic strategy was used to explore the potential action mechanism of semen collection methods on sperm. Some differentially abundant proteins that potentially influence semen quality were identified. Furthermore, this study suggests the possibility of utilizing specific proteins as predictive markers for goat semen quality.
Collapse
Affiliation(s)
- Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University El Jadida, Morocco
| | - Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Jiangchong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Qingyong Shao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Quobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China.
| |
Collapse
|
5
|
Zhao Y, Wang J, Shi S, Lan X, Cheng X, Li L, Zou Y, Jia L, Liu W, Luo Q, Chen Z, Huang C. LanCL2 Implicates in Testicular Redox Homeostasis and Acrosomal Maturation. Antioxidants (Basel) 2024; 13:534. [PMID: 38790639 PMCID: PMC11117947 DOI: 10.3390/antiox13050534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Redox balance plays an important role in testicular homeostasis. While lots of antioxidant molecules have been identified as widely expressed, the understanding of the critical mechanisms for redox management in male germ cells is inadequate. This study identified LanCL2 as a major male germ cell-specific antioxidant gene that is important for testicular homeostasis. Highly expressed in the brain and testis, LanCL2 expression correlates with testicular maturation and brain development. LanCL2 is enriched in spermatocytes and round spermatids of the testis. By examining LanCL2 knockout mice, we found that LanCL2 deletion did not affect postnatal brain development but injured the sperm parameters of adult mice. With histopathological analysis, we noticed that LanCL2 KO caused a pre-maturation and accelerated the self-renewal of spermatogonial stem cells in the early stage of spermatogenesis. In contrast, at the adult stage, LanCL2 KO damaged the acrosomal maturation in spermiogenesis, resulting in spermatogenic defects with a reduced number and motility of spermatozoa. Furthermore, we show that this disruption of testicular homeostasis in the LanCL2 KO testis was due to dysbalanced testicular redox homeostasis. This study demonstrates the critical role of LanCL2 in testicular homeostasis and redox balance.
Collapse
Affiliation(s)
- Yanling Zhao
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (J.W.); (S.S.); (X.L.); (X.C.); (L.J.); (W.L.); (Q.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.Z.)
| | - Jichen Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (J.W.); (S.S.); (X.L.); (X.C.); (L.J.); (W.L.); (Q.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.Z.)
| | - Shuai Shi
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (J.W.); (S.S.); (X.L.); (X.C.); (L.J.); (W.L.); (Q.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.Z.)
| | - Xinting Lan
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (J.W.); (S.S.); (X.L.); (X.C.); (L.J.); (W.L.); (Q.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.Z.)
| | - Xiangyu Cheng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (J.W.); (S.S.); (X.L.); (X.C.); (L.J.); (W.L.); (Q.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.Z.)
| | - Lixia Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.Z.)
| | - Yuanfeng Zou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.Z.)
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (J.W.); (S.S.); (X.L.); (X.C.); (L.J.); (W.L.); (Q.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.Z.)
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (J.W.); (S.S.); (X.L.); (X.C.); (L.J.); (W.L.); (Q.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.Z.)
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (J.W.); (S.S.); (X.L.); (X.C.); (L.J.); (W.L.); (Q.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.Z.)
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (J.W.); (S.S.); (X.L.); (X.C.); (L.J.); (W.L.); (Q.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.Z.)
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (J.W.); (S.S.); (X.L.); (X.C.); (L.J.); (W.L.); (Q.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (Y.Z.)
| |
Collapse
|
6
|
Izadpanah M, Yalameha B, Sani MZ, Cheragh PK, Mahdipour M, Rezabakhsh A, Rahbarghazi R. Exosomes as Theranostic Agents in Reproduction System. Adv Biol (Weinh) 2024; 8:e2300258. [PMID: 37955866 DOI: 10.1002/adbi.202300258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Exosomes (Exos), belonging to extracellular vesicles, are cell-derived nano-sized vesicles with the potential to carry different kinds of biological molecules. Many studies have proved the impacts of exosomal cargo on several biological processes in female and male reproductive systems. It is also hypothesized that changes in exosomal cargo are integral to the promotion of certain pathological conditions, thus Exos can be used as valid biomarkers for the diagnosis of infertility and other abnormal conditions. Here, efforts are made to collect some recent data related to the physiological significance of Exos in the reproductive system, and their potential therapeutic effects. It is anticipated that the current review article will lay the groundwork for elucidating the source and mechanisms by which Exos control the reproductive system additionally supplying fresh methods and concepts for the detection and treatment of disorders associated with fertility for future studies.
Collapse
Affiliation(s)
- Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Banafsheh Yalameha
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Liao HY, O’Flaherty C. Lysophosphatidic Acid Signalling Regulates Human Sperm Viability via the Phosphoinositide 3-Kinase/AKT Pathway. Cells 2023; 12:2196. [PMID: 37681929 PMCID: PMC10486690 DOI: 10.3390/cells12172196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Lysophosphatidic acid (LPA) signalling is essential for maintaining germ cell viability during mouse spermatogenesis; however, its role in human spermatozoa is unknown. We previously demonstrated that peroxiredoxin 6 (PRDX6) calcium-independent phospholipase A2 (iPLA2) releases lysophospholipids such as LPA or arachidonic acid (AA) and that inhibiting PRDX6 iPLA2 activity impairs sperm cell viability. The exogenous addition of LPA bypassed the inhibition of PRDX6 iPLA2 activity and maintained the active phosphoinositide 3-kinase (PI3K)/AKT pathway. Here, we aimed to study PI3K/AKT pathway regulation via LPA signalling and protein kinases in maintaining sperm viability. The localization of LPARs in human spermatozoa was determined using immunocytochemistry, and P-PI3K and P-AKT substrate phosphorylations via immunoblotting. Sperm viability was determined using the hypo-osmotic swelling test. LPAR1, 3, 5 and 6 were located on the sperm plasma membrane. The inhibition of LPAR1-3 with Ki16425 promoted the impairment of sperm viability and decreased the phosphorylation of PI3K AKT substrates. Inhibitors of PKC, receptor-type PTK and PLC impaired sperm viability and the PI3K/AKT pathway. Adding 1-oleoyl-2-acetyl-snglycerol (OAG), a cell-permeable analog of diacylglycerol (DAG), prevented the loss of sperm viability and maintained the phosphorylation of PI3K. In conclusion, human sperm viability is supported by LPAR signalling and regulated by PLC, PKC and RT-PTK by maintaining phosphorylation levels of PI3K and AKT substrates.
Collapse
Affiliation(s)
- Hao-Yu Liao
- Department of Medicine, Experimental Medicine Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Surgery, Urology Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- The Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Cristian O’Flaherty
- Department of Medicine, Experimental Medicine Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Surgery, Urology Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- The Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
8
|
Petrone O, Serafini S, Yu BYK, Filonenko V, Gout I, O’Flaherty C. Changes of the Protein CoAlation Pattern in Response to Oxidative Stress and Capacitation in Human Spermatozoa. Int J Mol Sci 2023; 24:12526. [PMID: 37569900 PMCID: PMC10419913 DOI: 10.3390/ijms241512526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The spermatozoa have limited antioxidant defences, a high polyunsaturated fatty acids content and the impossibility of synthesizing proteins, thus being susceptible to oxidative stress. High levels of reactive oxygen species (ROS) harm human spermatozoa, promoting oxidative damage to sperm lipids, proteins and DNA, leading to infertility. Coenzyme A (CoA) is a key metabolic integrator in all living cells. Recently, CoA was shown to function as a major cellular antioxidant mediated by a covalent modification of surface-exposed cysteines by CoA (protein CoAlation) under oxidative or metabolic stresses. Here, the profile of protein CoAlation was examined in sperm capacitation and in human spermatozoa treated with different oxidizing agents (hydrogen peroxide, (H2O2), diamide and tert-butyl hydroperoxide (t-BHP). Sperm viability and motility were also investigated. We found that H2O2 and diamide produced the highest levels of protein CoAlation and the greatest reduction of sperm motility without impairing viability. Protein CoAlation levels are regulated by 2-Cys peroxiredoxins (PRDXs). Capacitated spermatozoa showed lower levels of protein CoAlation than non-capacitation cells. This study is the first to demonstrate that PRDXs regulate protein CoAlation, which is part of the antioxidant response of human spermatozoa and participates in the redox regulation associated with sperm capacitation.
Collapse
Affiliation(s)
- Olivia Petrone
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada;
- Department of Surgery, Urology Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada;
| | - Steven Serafini
- Department of Surgery, Urology Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada;
- The Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London WC1E 7JE, UK; (B.Y.K.Y.); (I.G.)
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, 03680 Kyiv, Ukraine;
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 7JE, UK; (B.Y.K.Y.); (I.G.)
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, 03680 Kyiv, Ukraine;
| | - Cristian O’Flaherty
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada;
- Department of Surgery, Urology Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada;
- The Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
9
|
Li T, Wang H, Luo R, Shi H, Su M, Wu Y, Li Q, Ma K, Zhang Y, Ma Y. Identification and Functional Assignment of Genes Implicated in Sperm Maturation of Tibetan Sheep. Animals (Basel) 2023; 13:ani13091553. [PMID: 37174590 PMCID: PMC10177108 DOI: 10.3390/ani13091553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
While traveling through the epididymis, immature sheep spermatozoa undergo a sequence of processes that ultimately give them the capacity to swim and fertilize an egg. Different gene expression patterns may be found in the epididymal caput, corpus, and cauda, conferring variant or unique biological roles during epididymis development and sperm maturation. To search for candidate genes associated with ovine sperm maturation and assess their possible modulating mechanisms, we characterized gene expression in each epididymal segment derived from pre- and post-pubertal Tibetan sheep by RNA sequencing. Compared with pre-puberty, 7730 (3724 upregulated and 4006 downregulated), 7516 (3909 upregulated and 3607 downregulated), and 7586 (4115 elevated and 3471 downregulated) genes were found to be differentially expressed in the post-pubertal caput, corpus, and cauda epididymis, respectively, and real-time quantitative PCR verified the validity of the gathered expression patterns. Based on their functional annotations, most differential genes were assigned to the biological processes and pathways associated with cellular proliferation, differentiation, immune response, or metabolic activities. As for the post-pubertal epididymis, 2801, 197, and 186 genes were specifically expressed in the caput, corpus, and cauda, respectively. Functional annotation revealed that they were mainly enriched to various distinct biological processes associated with reproduction (including the caput binding of sperm to the zona pellucida; fertilization in the caput and corpus; and meiosis in the caput and cauda) and development (such as cell differentiation and developmental maturation in the caput; cell proliferation and metabolism in the corpus; and regulation of tube size and cell division/cell cycle in the cauda). Additionally, we focused on the identification of genes implicated in immunity and sperm maturation, and subsequent functional enrichment analysis revealed that immune-related genes mainly participated in the biological processes or pathways associated with the immune barrier (such as JAM3 and ITGA4/6/9) and immunosuppression (such as TGFB2, TGFBR1, TGFBR2, and SMAD3), thus protecting auto-immunogenic spermatozoa. Additionally, sperm maturation was mostly controlled by genes linked with cellular processes, including cell growth, proliferation, division, migration, morphogenesis, and junction. Altogether, these results suggest that most genes were differentially expressed in developmental epididymal regions to contribute to microenvironment development and sperm maturation. These findings help us better understand the epididymal biology, including sperm maturation pathways and functional differences between the epididymal regions in Tibetan sheep and other sheep breeds.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ruirui Luo
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
10
|
Xu GL, Ye XL, Vashisth MK, Zhao WZ. Correlation between PRDX2 and spermatogenesis under oxidative stress. Biochem Biophys Res Commun 2023; 656:139-145. [PMID: 36963350 DOI: 10.1016/j.bbrc.2023.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
BACKGROUND Obesity is one of the world's diseases that endanger human health, causing systemic inflammation caused by excessive reactive oxygen damage. An increase in the proportion of obese people with reduced sperm motility has been reported. But the mechanism behind it remains unclear. Peroxiredoxin 2 (PRDX2) is a member of the peroxidase family that effectively removes hydrogen peroxide. This study is to clarify the expression of PRDX2 in the testes of obese mice and lay a foundation for further exploration of the regulatory and protective effects of PRDX2 on spermatogenesis. METHOD A model of high-fat-induced obesity in animals was constructed, and the expression of PRDX2 in the testes of the two groups was detected by immunohistochemistry, western blotting, immunofluorescence and other techniques. Hydrogen peroxide (H2O2) and cholesterol were co-cultured in testicular support cells for 48 h to observe the expression of PRDX2. RESULT PRDX2 expression was reduced in the testes of the obese group, and immunohistochemistry showed that it was mainly localized to supporting cells. H2O2 inhibits the expression of PRDX2 in Sertoli cells, and high cholesterol upregulates the expression of PRDX2 in Sertoli cells. CONCLUSION PRDX2 has some antioxidant properties against changes in the testicular environment caused by HFD. And under short-term oxidative stress to enhance its antioxidant capacity. PRDX2 may be involved in maintaining the oxidative balance of the spermatogenesis environment.
Collapse
Affiliation(s)
- Guo-Lin Xu
- Department of Histology and Embryology, School of Basic Medicine, Dali University, Dali, Yunnan, PR China.
| | - Xiao-Lin Ye
- Department of Histology and Embryology, School of Basic Medicine, Dali University, Dali, Yunnan, PR China.
| | - Manoj Kumar Vashisth
- Department of Human Anatomy, School of Basic Medicine, Dali University, Dali, Yunnan, PR China.
| | - Wen-Zhen Zhao
- Department of Histology and Embryology, School of Basic Medicine, Dali University, Dali, Yunnan, PR China.
| |
Collapse
|
11
|
Mahé C, Marcelo P, Tsikis G, Tomas D, Labas V, Saint-Dizier M. The bovine uterine fluid proteome is more impacted by the stage of the estrous cycle than the proximity of the ovulating ovary in the periconception period. Theriogenology 2023; 198:332-343. [PMID: 36640738 DOI: 10.1016/j.theriogenology.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Uterine secretions provide a suitable environment for sperm selective migration during a couple of days preceding ovulation and for early embryo development before implantation. Our goal was to identify and quantify proteins in the bovine uterine fluid during the periovulatory period of the estrous cycle. Genital tracts with normal morphology were collected from adult cyclic Bos taurus females in a local slaughterhouse and classified into pre-ovulatory or post-ovulatory stages of cycle (around days 19-21 and 0-5 of cycle, respectively; n = 8 cows per stage) based on ovarian morphology. Proteins from uterine fluid collected from the utero-tubal junction to the base of each horn (four pools of two cows per condition) were analyzed by nanoLiquid Chromatography coupled with tandem Mass Spectrometry (nanoLC-MS/MS). A total of 1214 proteins were identified, of which 91% were shared between all conditions. Overall, 57% of proteins were predicted to be secreted and 17% were previously reported in uterine extracellular vesicles. Paired comparisons between uterine horns ipsilateral and contralateral to ovulation evidenced 12 differentially abundant proteins, including five at pre-ovulatory stage. Furthermore, 35 proteins differed in abundance between pre- and post-ovulatory stages, including 21 in the ipsilateral side of ovulation. Functional analysis of identified proteins demonstrated roles in binding, metabolism, cellular detoxification and the immune response. This study provides a valuable database of uterine proteins for functional studies on sperm physiology and early embryo development.
Collapse
Affiliation(s)
- Coline Mahé
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France.
| | - Paulo Marcelo
- Plateforme d'Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, Amiens, France
| | - Guillaume Tsikis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Daniel Tomas
- INRAE, Université de Tours, CHU de Tours, Plateforme de Phénotypage par Imagerie in/eX vivo de l'ANImal à la Molécule (PIXANIM), 37380, Nouzilly, France
| | - Valérie Labas
- INRAE, Université de Tours, CHU de Tours, Plateforme de Phénotypage par Imagerie in/eX vivo de l'ANImal à la Molécule (PIXANIM), 37380, Nouzilly, France
| | | |
Collapse
|
12
|
O’Flaherty C, Scarlata E. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: The protection of mammalian spermatozoa against oxidative stress. Reproduction 2022; 164:F67-F78. [PMID: 37021966 DOI: 10.1530/rep-22-0200] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In brief
This review focuses on the enzymatic antioxidant mechanisms to fight oxidative stress by spermatozoa, highlighting the differences among mammalian species. We discuss recent evidence about players that promote and fight oxidative stress and the need for novel strategies to diagnose and treat cases of male infertility associated with oxidative damage of the spermatozoon.
Abstract
The spermatozoon is very sensitive to high reactive oxygen species (ROS) levels due to its limited antioxidant system. A consortium of antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidases (GPXs), peroxiredoxins (PRDXs), thioredoxins, and glutathione-S-transferases, is necessary to produce healthy spermatozoa and to maintain sperm quality to ensure motility, capacitation, and DNA integrity. A delicate balance between ROS production and antioxidant enzymes is needed to ensure ROS-dependent sperm capacitation. GPX4 is an essential component of the mitochondrial sheath in mammalian spermatozoa, and GPX5 is a crucial antioxidant defence in the mouse epididymis to protect the sperm genome during the maturation of the spermatozoon. The mitochondrial superoxide (O2·–) production is controlled by SOD2, and the hydrogen peroxide (H2O2) generated by SOD2 activity and peroxynitrite (ONOO–) are scavenged mainly by PRDXs in human spermatozoa. PRDXs regulate the redox signalling necessary for sperm motility and capacitation, particularly by PRDX6. This enzyme is the first line of defence against oxidative stress to prevent lipid peroxidation and DNA oxidation by scavenging H2O2 and ONOO– through its peroxidase activity and repairing oxidized membranes by its calcium-independent phospholipase A2 activity. The success of antioxidant therapy in treating infertility resides in the proper diagnosis of the presence of oxidative stress and which type of ROS are produced. Thus, more research on the molecular mechanisms affected by oxidative stress, the development of novel diagnostic tools to identify infertile patients with oxidative stress, and randomized controlled trials are of paramount importance to generate personalized antioxidant therapy to restore male fertility.
Collapse
Affiliation(s)
- Cristian O’Flaherty
- Urology Division, Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- The Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Eleonora Scarlata
- Urology Division, Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- The Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Serafini S, O'Flaherty C. Redox Regulation to Modulate Phosphorylation Events in Human Spermatozoa. Antioxid Redox Signal 2022; 37:437-450. [PMID: 34714121 DOI: 10.1089/ars.2021.0117] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Significance: Spermatozoa are complex and compartmentalized cells that undergo capacitation, a series of biochemical and morphological changes to acquire the ability to fertilize oocytes. Reactive oxygen species (ROS) have a prominent dual role in capacitation. At physiological levels, ROS regulate numerous cellular processes, including increases of cyclic adenosine monophosphate, calcium, and activation of phosphorylation events needed for capacitation. On the contrary, at high concentrations that do not impair sperm viability, ROS can cause loss of motility and inhibition of capacitation. Higher ROS concentrations promote oxidation of lipids, proteins, and DNA leading to cell death, and these damages have been associated with male infertility. Critical Issues: When incubated under specific conditions, spermatozoa can produce low and controlled amounts of ROS that are not harmful but instead regulate numerous cellular processes, including the phosphorylation of tyrosine, serine, and threonine residues in critical proteins needed for sperm capacitation. Here, we outline the complex redox signaling in human spermatozoa needed to achieve fertility and the role of ROS as physiological mediators that trigger phosphorylation cascades. Moreover, we illustrate the importance of various phosphoproteins in spermatozoa capacitation, viability, and hyperactive motility. Future Directions: Further studies to elucidate the different phosphorylation players during sperm capacitation and acrosome reaction (the regulated exocytotic event that releases proteolytic enzymes allowing the spermatozoon to penetrate the zona pellucida and fertilize the oocyte) are essential to understand how the spermatozoon acquires the fertilizing ability to fertilize the oocyte. This knowledge will serve to develop novel diagnostic tools and therapy for male infertility. Antioxid. Redox Signal. 37, 437-450.
Collapse
Affiliation(s)
- Steven Serafini
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Canada
| | - Cristian O'Flaherty
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Canada.,Urology Division, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montréal, Canada.,The Research Institute, McGill University Health Centre, Montréal, Canada
| |
Collapse
|
14
|
Ribeiro JC, Nogueira-Ferreira R, Amado F, Alves MG, Ferreira R, Oliveira PF. Exploring the Role of Oxidative Stress in Sperm Motility: A Proteomic Network Approach. Antioxid Redox Signal 2022; 37:501-520. [PMID: 34847748 DOI: 10.1089/ars.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Infertility is a major global health problem, with nearly half of the cases being associated with male factors. Although reactive oxygen species (ROS) are crucial for sperm cell normal physiological processes, an imbalance between ROS production and antioxidants can lead to oxidative stress that can impair sperm function. Indeed, high semen ROS levels are reported in 30%-80% of infertile men. Recent Advances: Male oxidative stress infertility is an uprising classification for idiopathic infertility. Proteomic approaches, including quantitative mass spectrometry (MS)-based proteomics, are being utilized to explore the molecular mechanisms associated with oxidative stress in male infertility. Critical Issues: In this review, proteome data were collected from articles available on PubMed centered on MS-based proteomic studies, performed in seminal plasma and sperm cell samples, and enrolling men with impaired semen parameters. The bioinformatic analysis of proteome data with Cytoscape (ClueGO+CluePedia) and STRING tools allowed the identification of the biological processes more prevalent in asthenozoospermia, with focus on the ones related to oxidative stress. Future Directions: The identification of the antioxidant proteins in seminal plasma and sperm cells that can protect sperm cells from oxidative stress is crucial not only for a better understanding of the molecular mechanisms associated with male infertility but specially to guide new therapeutic possibilities. Antioxid. Redox Signal. 37, 501-520.
Collapse
Affiliation(s)
- João C Ribeiro
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Nogueira-Ferreira
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Amado
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
15
|
Keshtgar S, Ghani E. Impact of calcium and reactive oxygen species on human sperm function: Role of NOX5. Andrologia 2022; 54:e14470. [PMID: 35679508 DOI: 10.1111/and.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
NOX5 is introduced as a new therapeutic target for infertility treatment. This study aimed to compare the basal and stimulated reactive oxygen species (ROS) production and sperm function in human teratozoospermic (n = 15) and normozoospermic (n = 17) semen samples following calcium overload and NOX5 activation. Washed spermatozoa incubated for 1 h under five various conditions: control group, adding a calcium ionophore A23187, phorbol myristate acetate (PMA), A23187 + PMA, and diphenylene iodonium (DPI) + A23187 + PMA. ROS generation was measured immediately after treatment for 30 min. Motility, viability, acrosome reaction, and apoptosis were evaluated after 1-h incubation. ROS production significantly increased when A23187 or PMA was added to the sperm medium. DPI had suppressive effects on ROS generation. Progressive and total motility significantly decreased following calcium elevation and NOX5 activation, which was somewhat returned by DPI. Necrotic and live cells in teratozoospermia was, respectively, higher and lower than normozoospermia samples. Incubation with A23187 significantly increased the percentage of early and late apoptosis. Teratozoosperm are more vulnerable than normal spermatozoa, and produce more basal and stimulated ROS. It seems that calcium overload induces apoptosis in spermatozoa and loss of viability through MPT pore opening and increased intracellular ROS.
Collapse
Affiliation(s)
- Sara Keshtgar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
16
|
Chakraborty S, Roychoudhury S. Pathological Roles of Reactive Oxygen Species in Male Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:41-62. [PMID: 35641865 DOI: 10.1007/978-3-030-89340-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Reactive oxygen species (ROS) are free radicals that have at least one unpaired electron and play specific roles in the human body. An imbalance of ROS and antioxidant levels gives rise to a condition called oxidative stress. High levels of ROS in the male reproductive tract can interfere with its normal functioning and can even pose as toxic to the sperm, inhibiting sperm functioning (including motility) and metabolism. Oxidative stress resulting from ROS and lipid peroxidation is one of the major causes of male infertility including infertility in varicocele patients. These may cause DNA and peroxidative damage and apoptosis. Production of ROS in excess also leads to erectile dysfunction (ED). In recent years, studies have also linked oxidative stress with the development, progress, and therapy response of prostate cancer patients. The present study summarizes the pathological roles of ROS in male reproductive problems such as infertility, ED, and prostate cancer and also provide an insight into the probable mechanism through which ROS exert their pathological impact.
Collapse
|
17
|
Huang C, Yang C, Pang D, Li C, Gong H, Cao X, He X, Chen X, Mu B, Cui Y, Liu W, Luo Q, Cheng A, Jia L, Chen M, Xiao B, Chen Z. Animal models of male subfertility targeted on LanCL1-regulated spermatogenic redox homeostasis. Lab Anim (NY) 2022; 51:133-145. [PMID: 35469022 DOI: 10.1038/s41684-022-00961-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Oxidative stress in spermatozoa is a major contributor to male subfertility, which makes it an informed choice to generate animal models of male subfertility with targeted modifications of the antioxidant systems. However, the critical male germ cell-specific antioxidant mechanisms have not been well defined yet. Here we identify LanCL1 as a major male germ cell-specific antioxidant gene, reduced expression of which is related to human male infertility. Mice deficient in LanCL1 display spermatozoal oxidative damage and impaired male fertility. Histopathological studies reveal that LanCL1-mediated antioxidant response is required for mouse testicular homeostasis, from the initiation of spermatogenesis to the maintenance of viability and functionality of male germ cells. Conversely, a mouse model expressing LanCL1 transgene is protected against high-fat-diet/obesity-induced oxidative damage and subfertility. We further show that germ cell-expressed LanCL1, in response to spermatogenic reactive oxygen species, is regulated by transcription factor specific protein 1 (SP1) during spermatogenesis. This study demonstrates a critical role for the SP1-LanCL1 axis in regulating testicular homeostasis and male fertility mediated by redox balance, and provides evidence that LanCL1 genetically modified mice have attractive applications as animal models of male subfertility.
Collapse
Affiliation(s)
- Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Chengcheng Yang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Dejiang Pang
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Chao Li
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Huan Gong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xiyue Cao
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xia He
- Clinical Laboratory of the People's Hospital of Ya'an, Ya'an, P. R. China
| | - Xueyao Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bin Mu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yiyuan Cui
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Anchun Cheng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Mina Chen
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Bo Xiao
- Department of Biology, Southern University of Science and Technology, Shenzhen, P. R. China.
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.
| |
Collapse
|
18
|
Peroxiredoxin 6 Peroxidase and Ca 2+-Independent Phospholipase A 2 Activities Are Essential to Support Male-Mouse Fertility. Antioxidants (Basel) 2022; 11:antiox11020226. [PMID: 35204109 PMCID: PMC8868156 DOI: 10.3390/antiox11020226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Human infertility is an important health problem that affects one in six couples worldwide. Half of these cases are due to male infertility. Oxidative stress is a common culprit of male infertility, promoting lipid peroxidation and the oxidation of proteins and DNA in spermatozoa, thereby impairing motility, capacitation and fertilization. Peroxiredoxin 6 (PRDX6) possesses peroxidase and Ca2+-independent-phospholipase-A2 (iPLA2) activities that scavenge ROS and repair oxidized sperm membranes, respectively. PRDX6 protects spermatozoa against oxidative stress. Infertile men’s spermatozoa have impaired motility, elevated lipid peroxidation levels and DNA damage due to low PRDX6 levels. A lack of PRDX6 is associated with male-mouse infertility. Here, we determined the impact of the absence of PRDX6 peroxidase or iPLA2 activities on male-mouse fertility. Two-month-old male C57Bl6/J (wild-type), Prdx6−/−, C47S and D140A knock-in (peroxidase- and iPLA2-deficient, respectively) male mice were challenged with an in vivo oxidative stress triggered by tert-butyl hydroperoxide (t-BHP). C47S and D140A males produced smaller litters compared to wild-type controls. The t-BHP treatment promoted a lower number of pups, high levels of lipid peroxidation, tyrosine nitration, and DNA oxidation in all mutant spermatozoa compared to wild-type controls. All mutant spermatozoa had impaired capacitation and motility. In summary, both PRDX6 peroxidase and iPLA2 activities are essential to support male-mouse fertility.
Collapse
|
19
|
Pathological Role of Reactive Oxygen Species on Female Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:201-220. [PMID: 36472824 DOI: 10.1007/978-3-031-12966-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress (OS), a clinical predicament characterized by a shift in homeostatic imbalance among prooxidant molecules embracing reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with antioxidant defenses, has been established to play an indispensable part in the pathophysiology of subfertility in both human males and females. ROS are highly reactive oxidizing by-products generated during critical oxygen-consuming processes or aerobic metabolism. A healthy body system has its own course of action to maintain the equilibrium between prooxidants and antioxidants with an efficient defense system to fight against ROS. But when ROS production crosses its threshold, the disturbance in homeostatic balance results in OS. Besides their noxious effects, literature studies have depicted that controlled and adequate ROS concentrations exert physiologic functions, especially that gynecologic OS is an important mediator of conception in females. Yet the impact of ROS on oocytes and reproductive functions still needs a strong attestation for further analysis because the disruption in prooxidant and antioxidant balance leads to abrupt ROS generation initiating multiple reproductive diseases such as polycystic ovary syndrome (PCOS), endometriosis, and unexplained infertility in addition to other impediments in pregnancy such as recurrent pregnancy loss, spontaneous abortion, and preeclampsia. The current article elucidates the skeptical state of affairs created by ROS that influences female fertility.
Collapse
|
20
|
Khodamoradi K, Golan R, Dullea A, Ramasamy R. Exosomes as Potential Biomarkers for Erectile Dysfunction, Varicocele, and Testicular Injury. Sex Med Rev 2021; 10:311-322. [PMID: 34838504 DOI: 10.1016/j.sxmr.2021.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Optimal male reproductive health is dependent upon critical mediators of cell-cell communication: exosomes or extracellular vesicles. These vesicles are nano-sized particles released into a variety of bodily fluids, such as blood and semen. Exosomes are highly stable and can carry genetic and other molecules, including DNA, RNA, and proteins, which provide information about their origin cells. OBJECTIVE To identify exosomes as potential biomarkers or therapeutic mediators in male sexual and reproductive disorders like erectile dysfunction (ED), varicocele, and testicular injury. METHODS A PubMed search was performed to highlight all articles available relating to exosomes and extracellular vesicles in the pathogenesis of different male sexual and reproductive disorders, and their importance in clinical use as both diagnostic markers and potential therapeutic mediators. RESULTS Various male reproductive system disorders, such as ED, varicocele, and testicular injury, are linked to increased or decreased levels of exosomes. Exosomes have a higher number of molecules such as DNA, RNA, and proteins, which can give a more precise and comprehensive result when compared to other biomarkers. Exosomes can be considered as plausible diagnostic biomarkers for male sexual and reproductive diseases, with considerable advantages over other diagnostic procedures such as invasive tissue biopsy. Exosomes can carry cargo such certain drugs and therapeutic molecules making them a promising therapeutic approach. Several studies have begun to test treating various male sexual reproductive disorders with exosomes. CONCLUSION Exosomes deliver many components that can regulate gene expression and target signaling pathways. Understanding how extracellular vesicles can be utilized as biomarkers in diagnosing men, particularly those with idiopathic erectile dysfunction, will not only aid in diagnosis but also help with making therapeutic targets. Khodamoradi K, Golan R, Dullea A, et al. Exosomes as Potential Biomarkers for Erectile Dysfunction, Varicocele, and Testicular Injury. Sex Med Rev 2021;XX:XXX-XXX.
Collapse
Affiliation(s)
- Kajal Khodamoradi
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roei Golan
- Departement of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Alexandra Dullea
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
21
|
Alvarez-Rodriguez M, Martinez CA, Roca J, Rodriguez-Martinez H. mRNA expression of oxidative-reductive proteins in boars with documented different fertility can identify relevant prognostic biomarkers. Res Vet Sci 2021; 141:195-202. [PMID: 34763256 DOI: 10.1016/j.rvsc.2021.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022]
Abstract
Oxidative stress unbalance is a major factor causing impairment of sperm function and, ultimately, sperm death. In this study, we identified transcriptomic and proteomic markers for oxidative-related protectors from the generation of reactive oxygen species (ROS) in spermatozoa from breeding boars with documented high- or low-fertility. Particular attention was paid to glutathione peroxidases, and to transcripts related to DNA stabilization and compaction, as protamine and transition proteins. mRNA cargo analysis was performed using porcine-specific micro-arrays (GeneChip® miRNA 4.0 and GeneChip® Porcine Gene 1.0 ST) and qPCR validation. Differences between fertility-classed boars were ample among biomarkers; some upregulated only at protein level (catalase (CAT), superoxide dismutase 1 (SOD1) and glutathione proteins), or only at the mRNA level (ATOX1, Antioxidant Protein 1). In addition, protamines 2 and 3, essential for sperm DNA condensation and also transition proteins 1 and 2 (TNP1 and TNP2), required during histone-to-protamine replacement, were overexpressed in spermatozoa from high-fertile boars. This up-regulation seems concerted to reduce DNA accessibility to ROS attack, protecting the DNA. The upregulated intracellular phospholipid hydroperoxide glutathione peroxidase (GPx4), in high-fertile boars at mRNA level, can be considered a most relevant biomarker for fertility disclosure during sperm evaluation.
Collapse
Affiliation(s)
- Manuel Alvarez-Rodriguez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, 08193, Bellaterra, (Cerdanyola del Vallès), Barcelona, Spain.
| | - Cristina A Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| |
Collapse
|
22
|
Ribeiro JC, Braga PC, Martins AD, Silva BM, Alves MG, Oliveira PF. Antioxidants Present in Reproductive Tract Fluids and Their Relevance for Fertility. Antioxidants (Basel) 2021; 10:antiox10091441. [PMID: 34573073 PMCID: PMC8466935 DOI: 10.3390/antiox10091441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022] Open
Abstract
Nowadays, infertility is classified as a disease of the reproductive system. Although it does not compromise the life of the individual, it can have detrimental effects on the physiological and psychological health of the couple. Male fertility evaluation is mainly focused on the analysis of sperm parameters. However, the ejaculated fluid is also composed of seminal plasma, and the study of this fluid can provide crucial information to help in the assessment of male fertility status. Total antioxidant capacity of the seminal plasma has been positively correlated with the fertility of men. Moreover, evidence highlights to a similar importance as that of female reproductive tract fluid antioxidant capabilities and female fertility. Herein, we describe the functions of seminal plasma and female reproductive tract fluids, as well as their main antioxidant components and their relationships with fertility outcomes. Additionally, this review contains the most up to date information regarding the mechanisms of the interaction between the male and the female reproductive fluids and the importance of proper antioxidant capacity for fertilization.
Collapse
Affiliation(s)
- João C. Ribeiro
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (J.C.R.); (P.C.B.); (M.G.A.)
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Patrícia C. Braga
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (J.C.R.); (P.C.B.); (M.G.A.)
| | - Ana D. Martins
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Branca M. Silva
- CICS, Faculty of Health Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - Marco G. Alves
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (J.C.R.); (P.C.B.); (M.G.A.)
| | - Pedro F. Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: ; Tel.: +351-234370718
| |
Collapse
|
23
|
Yu J, Li M, Ji C, Li X, Li H, Liu G, Wang Y, Liu G, Wang T, Che X, Lei C, Dang R, Zhao F. Comparative proteomic analysis of seminal plasma proteins in relation to freezability of Dezhou donkey semen. Anim Reprod Sci 2021; 231:106794. [PMID: 34147861 DOI: 10.1016/j.anireprosci.2021.106794] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/17/2023]
Abstract
Variation in donkey sperm freezability (capacity to withstand freeze-thawing) between ejaculates is a limitation for sperm cryopreservation. Seminal plasma proteins are essential for sperm function and also related to individual differences in sperm freezability. A Tandem Mass Tag (TMT) peptide labeling combine with a LC-MS/MS approach was conducted to quantitatively identify the seminal plasma proteins differentially abundant in ejaculates with optimal freezability characteristics (GFE) compared with those with suboptimal freezability characteristics (PFE). A total of 866 proteins were identified, and 99 ejaculates were in larger abundance in GFE samples. Differentially abundant proteins (DAPs) were subjected to intensive bioinformatic analysis. The majority of DAPs were involved in metabolic processes, oxidation-reduction processes and biological regulation. Results from functional protein analysis suggested that proteins functioned in oxidoreductase activity and acid phosphatase activity. This is the first report where there were analyses of the proteome of seminal plasma from donkey ejaculates with different freezability and to identify candidate proteins that could be used to explore the molecular mechanism related to donkey sperm cryotolerance. In this study, there also was elucidation of biomarkers for the early identification and selection of donkeys with optimal semen freezability.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China; National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No. 78, E-jiao Street, Dong'e Country, Shandong Province, 252201, China
| | - Min Li
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No. 78, E-jiao Street, Dong'e Country, Shandong Province, 252201, China
| | - Chuanliang Ji
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No. 78, E-jiao Street, Dong'e Country, Shandong Province, 252201, China
| | - Xuexian Li
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No. 78, E-jiao Street, Dong'e Country, Shandong Province, 252201, China
| | - Haijing Li
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No. 78, E-jiao Street, Dong'e Country, Shandong Province, 252201, China
| | - Guiqin Liu
- Shandong Donkey Industry, Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, 252201, China
| | - Yantao Wang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No. 78, E-jiao Street, Dong'e Country, Shandong Province, 252201, China; Shandong Dong-E Balck Donkey Animal Husbandry Technology Co. LTD, Liaocheng, 252201, China
| | - Guangyuan Liu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No. 78, E-jiao Street, Dong'e Country, Shandong Province, 252201, China
| | - Tao Wang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No. 78, E-jiao Street, Dong'e Country, Shandong Province, 252201, China
| | - Xiaonan Che
- Liaocheng Animal Husbandry and Veterinary Technical Service Center, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China.
| | - Fuwei Zhao
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No. 78, E-jiao Street, Dong'e Country, Shandong Province, 252201, China.
| |
Collapse
|
24
|
Peroxiredoxin 4 directly affects the male fertility outcome in porcine. Theriogenology 2021; 171:85-93. [PMID: 34051589 DOI: 10.1016/j.theriogenology.2021.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/08/2021] [Accepted: 05/16/2021] [Indexed: 11/21/2022]
Abstract
Peroxiredoxins (Prdxs) are known to play a critical role in regulating male fertility as antioxidant enzymes. Although several studies have suggested a close association between Prdxs and male fertility, few studies have explored the efficacy of Prdxs to predict male fertility. Therefore, the current study was designed to discover the most efficient biomarkers among the Prdxs with six isoforms. Our study showed a significant positive correlation between the litter size and the levels of PRDX 4 among all isoforms in spermatozoa. Subsequently, a regression analysis using a combination of markers was conducted to increase efficacy for fertility prediction. Nevertheless, PRDX4 had the highest efficacy compared to other combination models to predict litter size. The prediction accuracy of male fertility was further evaluated through receiver operating characteristic curve analysis, which showed that PRDX 4 could predict the litter size with high overall accuracy of 95%. Moreover, litter size was increased by 1.55 piglets after predicting high litter size using PRDX 4. This is the first study to comprehensively elucidate the role of all isoforms of PRDXs on male fertility to the best of our knowledge. PRDX 4 was tested and evaluated up to a practical level. Data here reported suggesting PRDX 4 marker allowed the highest accuracy for male fertility prediction and diagnosis, leading to a measurable improvement in the male fertility outcome.
Collapse
|
25
|
Oxidative Stress and Reproductive Function in the Aging Male. BIOLOGY 2020; 9:biology9090282. [PMID: 32932761 PMCID: PMC7564187 DOI: 10.3390/biology9090282] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022]
Abstract
With the delay of parenthood becoming more common, the age at which men father children is on the rise. While the effects of advanced maternal age have been well documented, only recently have studies started to focus on the impact of advanced paternal age (APA) in the context of male reproduction. As men age, the antioxidant defense system gradually becomes less efficient and elevated levels of reactive oxygen species (ROS) accumulate in spermatozoa; this can impair their functional and structural integrity. In this review, we present an overview of how oxidative stress is implicated in male reproductive aging by providing a summary of the sources and roles of ROS, the theories of aging, and the current animal and human studies that demonstrate the impacts of APA on the male germ line, the health of progeny and fertility, and how treatment with antioxidants may reverse these effects.
Collapse
|
26
|
Schneider S, Shakeri F, Trötschel C, Arévalo L, Kruse A, Buness A, Poetsch A, Steger K, Schorle H. Protamine-2 Deficiency Initiates a Reactive Oxygen Species (ROS)-Mediated Destruction Cascade during Epididymal Sperm Maturation in Mice. Cells 2020; 9:E1789. [PMID: 32727081 PMCID: PMC7463811 DOI: 10.3390/cells9081789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Protamines are the safeguards of the paternal sperm genome. They replace most of the histones during spermiogenesis, resulting in DNA hypercondensation, thereby protecting its genome from environmental noxa. Impaired protamination has been linked to male infertility in mice and humans in many studies. Apart from impaired DNA integrity, protamine-deficient human and murine sperm show multiple secondary effects, including decreased motility and aberrant head morphology. In this study, we use a Protamine-2 (Prm2)-deficient mouse model in combination with label-free quantitative proteomics to decipher the underlying molecular processes of these effects. We show that loss of the sperm's antioxidant capacity, indicated by downregulation of key proteins like Superoxide dismutase type 1 (SOD1) and Peroxiredoxin 5 (PRDX5), ultimately initiates an oxidative stress-mediated destruction cascade during epididymal sperm maturation. This is confirmed by an increased level of 8-OHdG in epididymal sperm, a biomarker for oxidative stress-mediated DNA damage. Prm2-deficient testicular sperm are not affected and initiate the proper development of blastocyst stage preimplantation embryos in vitro upon intracytoplasmic sperm injection (ICSI) into oocytes. Our results provide new insight into the role of Prm2 and its downstream molecular effects on sperm function and present an important contribution to the investigation of new treatment regimens for infertile men with impaired protamination.
Collapse
Affiliation(s)
- Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (S.S.); (L.A.)
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (F.S.); (A.B.)
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Christian Trötschel
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; (C.T.); (A.P.)
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (S.S.); (L.A.)
| | - Alexander Kruse
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Biomedical Research Center of the Justus-Liebig University Gießen, 35392 Gießen, Germany; (A.K.); (K.S.)
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (F.S.); (A.B.)
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Ansgar Poetsch
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; (C.T.); (A.P.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Biomedical Research Center of the Justus-Liebig University Gießen, 35392 Gießen, Germany; (A.K.); (K.S.)
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (S.S.); (L.A.)
| |
Collapse
|
27
|
A Novel Combination of γ-Tocopherol-Rich Mixture of Tocopherols and Ascorbic Acid Restores Fertility in Cases of Tyrosine Nitration-Associated Male Infertility in Mice. Antioxidants (Basel) 2020; 9:antiox9070613. [PMID: 32668798 PMCID: PMC7402129 DOI: 10.3390/antiox9070613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
Infertility is an important health problem that affects up to 16% of couples worldwide. Male infertility is responsible for 50% of the cases. Currently, a physical examination, hormone profiling and the evaluation of two consecutive semen samples (to determine the sperm concentration, motility, morphology and, in very few cases, sperm DNA integrity) are the sole tools that physicians have to evaluate infertility in men. Antioxidant therapy is often used to improve sperm quality and function in infertile men. However, there are controversial results regarding the efficacy of these treatments. Prdx6-/- male mice are subfertile, displaying significant oxidative damage in the lipids, proteins and DNA of their spermatozoa. Here, we used Prdx6-/- male mice to test whether a novel combination of tocopherols that contained 60% γ-tocopherol and ascorbic acid could restore their fertility. These mice were fed with the supplemented (Vit. Mix) or control diets. To assess sperm quality, we determined the motility, levels of lipid peroxidation, DNA oxidation and tyrosine nitration in the spermatozoa. The number of pups sired by the Prdx6-/- mice fed with the Vit. Mix diet was higher than that sired by the males fed with the control diet, and the pups' mortality was lower. The sperm quality was improved in the males fed with the supplemented diet. We concluded that treatment with a supplement composed of tocopherols and rich in γ-tocopherol and ascorbic acid is effective in restoring fertility in cases where oxidative stress and high levels of tyrosine nitration are associated with male infertility.
Collapse
|
28
|
Dias TR, Martin-Hidalgo D, Silva BM, Oliveira PF, Alves MG. Endogenous and Exogenous Antioxidants As a Tool to Ameliorate Male Infertility Induced by Reactive Oxygen Species. Antioxid Redox Signal 2020; 33:767-785. [PMID: 32368933 DOI: 10.1089/ars.2019.7977] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Antioxidants are essential for the maintenance of cellular redox homeodynamics in the male reproductive tract, playing a key role in fertilizing potential. Reactive oxygen species (ROS), at physiological levels, are essential for sperm function and fertilization. Under pathological conditions, abnormal production of ROS may occur. Redox control is primarily regulated by the inner antioxidant system. However, these endogenous antioxidants may be present at abnormal amounts or may be insufficient. Exogenous antioxidants obtained through the diet may have an important role, particularly in specific pathological conditions. This review addresses the regulation of redox homeodynamics in the male reproductive tract by endogenous and exogenous antioxidants and the importance of their cooperation for the maintenance of fertility. Recent Advances: Many studies have shown the importance of antioxidants for the preservation of male fertility, mostly under pathological conditions. Excessive antioxidants can inhibit ROS-induced signaling pathways that are essential for the reproductive system. The challenge is to keep the balance between oxidants and antioxidants to maintain ROS-amount at physiological concentration. Critical Issues: Although antioxidant therapies are gaining popularity and showing promising results in the improvement of male fertility, there is a lack of knowledge regarding the type of exogenous antioxidant, the doses and time to be administered. Future Directions: It would be of great importance to find a way to restore redox homeostasis under stress conditions. Understanding the poorly studied mechanisms by which exogenous antioxidants cooperate with the inner cellular antioxidant system to counteract free radicals may help in the development of new fertility therapies.
Collapse
Affiliation(s)
- Tânia R Dias
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
- Department of Medical Sciences, Universidade da Beira Interior, Covilhã, Portugal
- LAQV/REQUIMTE-Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - David Martin-Hidalgo
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, Cáceres, Spain
| | - Branca M Silva
- Department of Medical Sciences, Universidade da Beira Interior, Covilhã, Portugal
| | - Pedro F Oliveira
- Department of Chemistry, QOPNA and LAQV, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| |
Collapse
|
29
|
Bromfield EG, Walters JLH, Cafe SL, Bernstein IR, Stanger SJ, Anderson AL, Aitken RJ, McLaughlin EA, Dun MD, Gadella BM, Nixon B. Differential cell death decisions in the testis: evidence for an exclusive window of ferroptosis in round spermatids. Mol Hum Reprod 2020; 25:241-256. [PMID: 30865280 DOI: 10.1093/molehr/gaz015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/25/2019] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is a major aetiology in many pathologies, including that of male infertility. Recent evidence in somatic cells has linked oxidative stress to the induction of a novel cell death modality termed ferroptosis. However, the induction of this iron-regulated, caspase-independent cell death pathway has never been explored outside of the soma. Ferroptosis is initiated through the inactivation of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and is exacerbated by the activity of arachidonate 15-lipoxygenase (ALOX15), a lipoxygenase enzyme that facilitates lipid degradation. Here, we demonstrate that male germ cells of the mouse exhibit hallmarks of ferroptosis including; a caspase-independent decline in viability following exposure to oxidative stress conditions induced by the electrophile 4-hydroxynonenal or the ferroptosis activators (erastin and RSL3), as well as a reciprocal upregulation of ALOX15 and down regulation of GPX4 protein expression. Moreover, the round spermatid developmental stage may be sensitized to ferroptosis via the action of acyl-CoA synthetase long-chain family member 4 (ACSL4), which modifies membrane lipid composition in a manner favourable to lipid peroxidation. This work provides a clear impetus to explore the contribution of ferroptosis to the demise of germline cells during periods of acute stress in in vivo models.
Collapse
Affiliation(s)
- Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Shenae L Cafe
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Ilana R Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | | | - Matthew D Dun
- Priority Research Centre for Cancer Research, Innovation and Translation, Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Barend M Gadella
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM, Utrecht, The Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM, Utrecht, The Netherlands
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| |
Collapse
|
30
|
Fernandez MC, O'Flaherty C. Peroxiredoxin 6 is the primary antioxidant enzyme for the maintenance of viability and DNA integrity in human spermatozoa. Hum Reprod 2020; 33:1394-1407. [PMID: 29912414 DOI: 10.1093/humrep/dey221] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 01/24/2023] Open
Abstract
STUDY QUESTION Are all components of the peroxiredoxins (PRDXs) system important to control the levels of reactive oxygen species (ROS) to maintain viability and DNA integrity in spermatozoa? SUMMARY ANSWER PRDX6 is the primary player of the PRDXs system for maintaining viability and DNA integrity in human spermatozoa. WHAT IS KNOWN ALREADY Mammalian spermatozoa are sensitive to high levels of ROS and PRDXs are antioxidant enzymes proven to control the levels of ROS generated during sperm capacitation to avoid oxidative damage in the spermatozoon. Low amounts of PRDXs are associated with male infertility. The absence of PRDX6 promotes sperm oxidative damage and infertility in mice. STUDY DESIGN, SIZE, DURATION Semen samples were obtained over a period of one year from a cohort of 20 healthy non-smoking volunteers aged 22-30 years old. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm from healthy donors was incubated for 2 h in the absence or presence of inhibitors for the 2-Cys PRDXs system (peroxidase, reactivation system and NADPH-enzymes suppliers) or the 1-Cys PRDX system (peroxidase and calcium independent-phospholipase A2 (Ca2+-iPLA2) activity). Sperm viability, DNA oxidation, ROS levels, mitochondrial membrane potential and 4-hydroxynonenal production were determined by flow cytometry. MAIN RESULTS AND THE ROLE OF CHANCE We observed a significant decrease in viable cells due to inhibitors of the 2-Cys PRDXs, PRDX6 Ca2+-iPLA2 activity or the PRDX reactivation system compared to controls (P ≤ 0.05). PRDX6 Ca2+-iPLA2 activity inhibition had the strongest detrimental effect on sperm viability and DNA oxidation compared to controls (P ≤ 0.05). The 2-Cys PRDXs did not compensate for the inhibition of PRDX6 peroxidase and Ca2+-iPLA2 activities. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Players of the reactivation systems may differ among mammalian species. WIDER IMPLICATIONS OF THE FINDINGS The Ca2+-iPLA2 activity of PRDX6 is the most important and first line of defense against oxidative stress in human spermatozoa. Peroxynitrite is scavenged mainly by the PRDX6 peroxidase activity. These findings can help to design new diagnostic tools and therapies for male infertility. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by The Canadian Institutes of Health Research (MOP 133661 to C.O.), and by RI MUHC-Desjardins Studentship in Child Health Research awarded to M.C.F. The authors have nothing to disclose.
Collapse
Affiliation(s)
- Maria C Fernandez
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, QC, Canada
| | - Cristian O'Flaherty
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| |
Collapse
|
31
|
Abstract
Significance: Spermatozoa are very sensitive to high levels of reactive oxygen species (ROS) due to the limited antioxidant systems present in these terminal cells. However, tight regulation of ROS levels must be ensured to accomplish the unique goal of the spermatozoon, that is, the transfer of the paternal genome into the mature oocyte during the fertilization process. Thus, it is essential that the restricted antioxidant enzymatic systems are active for sperm function. Recent Advances: Oxidative stress is associated with low sperm quality. High levels of ROS in spermatozoa produce oxidation of lipids, proteins, and DNA that lead to lipid peroxidation, oxidation of essential structural proteins and enzymes, and mutations due to oxidation of DNA. Critical Issues: In this study, we described the available knockout mouse models that helped to better understand the role of different antioxidant enzymes in male fertility. We focused mainly on those studies that directly explore the effects of the lack of these enzymes in male fertility and included information when existing knockout mouse models produced for other purposes were used. Special attention was given in this review to the consequences of the absence of antioxidant enzymes on sperm quality and fertility of aging males from the knockout models. Future Directions: Further studies using novel mouse models lacking different antioxidants and their combinations are essential to understand the consequences of high levels of ROS in aging testes, epididymes, spermatozoa, and embryo development to produce a healthy baby.
Collapse
Affiliation(s)
- Eleonora Scarlata
- Division of Urology, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,The Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - Cristian O'Flaherty
- Division of Urology, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,The Research Institute, McGill University Health Centre, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
32
|
Nowicka-Bauer K, Nixon B. Molecular Changes Induced by Oxidative Stress that Impair Human Sperm Motility. Antioxidants (Basel) 2020; 9:antiox9020134. [PMID: 32033035 PMCID: PMC7070831 DOI: 10.3390/antiox9020134] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
A state of oxidative stress (OS) and the presence of reactive oxygen species (ROS) in the male reproductive tract are strongly correlated with infertility. While physiological levels of ROS are necessary for normal sperm functioning, elevated ROS production can overwhelm the cell's limited antioxidant defenses leading to dysfunction and loss of fertilizing potential. Among the deleterious pleiotropic impacts arising from OS, sperm motility appears to be particularly vulnerable. Here, we present a mechanistic account for how OS contributes to altered sperm motility profiles. In our model, it is suggested that the abundant polyunsaturated fatty acids (PUFAs) residing in the sperm membrane serve to sensitize the male germ cell to ROS attack by virtue of their ability to act as substrates for lipid peroxidation (LPO) cascades. Upon initiation, LPO leads to dramatic remodeling of the composition and biophysical properties of sperm membranes and, in the case of the mitochondria, this manifests in a dissipation of membrane potential, electron leakage, increased ROS production and reduced capacity for energy production. This situation is exacerbated by the production of cytotoxic LPO byproducts such as 4-hydroxynonenal, which dysregulate molecules associated with sperm bioenergetic pathways as well as the structural and signaling components of the motility apparatus. The impact of ROS also extends to lesions in the paternal genome, as is commonly seen in the defective spermatozoa of asthenozoospermic males. Concluding, the presence of OS in the male reproductive tract is strongly and positively correlated with reduced sperm motility and fertilizing potential, thus providing a rational target for the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Karolina Nowicka-Bauer
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- Correspondence:
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia;
- Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, Newcastle, NSW 2305, Australia
| |
Collapse
|
33
|
O’Flaherty C, Boisvert A, Manku G, Culty M. Protective Role of Peroxiredoxins against Reactive Oxygen Species in Neonatal Rat Testicular Gonocytes. Antioxidants (Basel) 2019; 9:antiox9010032. [PMID: 31905831 PMCID: PMC7022870 DOI: 10.3390/antiox9010032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/27/2022] Open
Abstract
Peroxiredoxins (PRDXs) are antioxidant enzymes that protect cells from oxidative stress and play a role in reactive oxygen species (ROS)-mediated signaling. We reported that PRDXs are critical for human fertility by maintaining sperm viability and regulating ROS levels during capacitation. Moreover, studies on Prdx6−/− mice revealed the essential role of PRDX6 in the viability, motility, and fertility competence of spermatozoa. Although PRDXs are abundant in the testis and spermatozoa, their potential role at different phases of spermatogenesis and in perinatal germ cells is unknown. Here, we examined the expression and role of PRDXs in isolated rat neonatal gonocytes, the precursors of spermatogonia, including spermatogonial stem cells. Gene array, qPCR analyses showed that PRDX1, 2, 3, 5, and 6 transcripts are among the most abundant antioxidant genes in postnatal day (PND) 3 gonocytes, while immunofluorescence confirmed the expression of PRDX1, 2, and 6 proteins. The role of PRDXs in gonocyte viability was examined using PRDX inhibitors, revealing that the 2-Cys PRDXs and PRDX6 peroxidases activities are critical for gonocytes viability in basal condition, likely preventing an excessive accumulation of endogenous ROS in the cells. In contrast to its crucial role in spermatozoa, PRDX6 independent phospholipase A2 (iPLA2) activity was not critical in gonocytes in basal conditions. However, under conditions of H2O2-induced oxidative stress, all these enzymatic activities were critical to maintain gonocyte viability. The inhibition of PRDXs promoted a two-fold increase in lipid peroxidation and prevented gonocyte differentiation. These results suggest that ROS are produced in neonatal gonocytes, where they are maintained by PRDXs at levels that are non-toxic and permissive for cell differentiation. These findings show that PRDXs play a major role in the antioxidant machinery of gonocytes, to maintain cell viability and allow for differentiation.
Collapse
Affiliation(s)
- Cristian O’Flaherty
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (C.O.); (A.B.); (G.M.)
- Department of Surgery (Urology Division), McGill University, Montreal, QC H4A 3J1, Canada
| | - Annie Boisvert
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (C.O.); (A.B.); (G.M.)
| | - Gurpreet Manku
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (C.O.); (A.B.); (G.M.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (C.O.); (A.B.); (G.M.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA
- Correspondence: ; Tel.: +1-323-865-1677
| |
Collapse
|
34
|
O'Flaherty C. Orchestrating the antioxidant defenses in the epididymis. Andrology 2019; 7:662-668. [PMID: 31044545 DOI: 10.1111/andr.12630] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/26/2018] [Accepted: 03/29/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND During the post-testicular maturation that occurs in the epididymis, spermatozoa need to face biochemical and morphological changes that may make them vulnerable to oxidative damage. During spermatogenesis and the epididymal maturation, the spermatozoon acquires antioxidant enzymes needed to face possible increases of reactive oxygen species (ROS) produced by its own aerobic metabolism but also due to ROS produced in high quantities by abnormal spermatozoa. OBJECTIVES Provide an up-to-date review of the enzymatic antioxidant system in the epididymis. MATERIAL AND METHODS A thorough literature review was performed for papers concerning the players of the antioxidant defenses in the epididymis. RESULTS The antioxidant system in the epididymis is composed by superoxide dismutases, catalase, glutathione peroxidases, peroxiredoxins, glutathione-S-transferases, thioredoxins and thioredoxin reductase. They work together to maintain low levels of ROS during the epididymal maturation. Knockout models revealed that the absence of one of the enzyme impact sperm quality affecting a variety of proteins involved in motility, the ability to fertilize oocyte, and promotes oxidative damage to the sperm DNA. DISCUSSION AND CONCLUSIONS These findings suggest that each enzyme is playing a specific role, and in most of the cases, no compensatory mechanisms are put in place when one enzyme is absent. This review highlights the different antioxidant enzymes in the epididymis and their role during maturation of the spermatozoon.
Collapse
Affiliation(s)
- C O'Flaherty
- Departments of Surgery (Urology Division) and Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
35
|
Proteomic Signatures Reveal Differences in Stress Response, Antioxidant Defense and Proteasomal Activity in Fertile Men with High Seminal ROS Levels. Int J Mol Sci 2019; 20:ijms20010203. [PMID: 30626014 PMCID: PMC6337289 DOI: 10.3390/ijms20010203] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 12/20/2022] Open
Abstract
Elevated levels of reactive oxygen species (ROS) are a major cause of male infertility. However, some men with high seminal ROS levels are still fertile. The main objective of this study was to understand the molecular mechanism(s) responsible for the preservation of fertility in those men. Semen samples from fertile men were divided into two groups: control (n = 10, ROS < 102.2 RLU/s/106 sperm) and ROS+ (n = 10, ROS > 102.2 RLU/s/106 sperm). Proteomic analysis of seminal plasma and spermatozoa was used to identify the differentially expressed proteins (DEPs) between the experimental groups, from which some proteins were validated by Western blot (WB). A total of 44 and 371 DEPs were identified between the study groups in the seminal plasma and spermatozoa, respectively. The identified DEPs were primarily involved in oxidoreductase, endopeptidase inhibitor, and antioxidant activities. We validated by WB the underexpression of NADH:ubiquinone oxidoreductase core subunit S1 (p = 0.01), as well as the overexpression of superoxide dismutase 1 (p = 0.03) and peroxiredoxin 4 (p = 0.04) in spermatozoa of ROS+ group. Our data suggest that fertile men with high ROS levels possess an effective antioxidant defense system that protects sperm proteins, as well as an active proteasomal system for degradation of defective proteins.
Collapse
|
36
|
Protein profile of Dabry's sturgeon (Acipenser dabryanus) spermatozoa and relationship to sperm quality. Anim Reprod Sci 2018; 201:1-11. [PMID: 30587384 DOI: 10.1016/j.anireprosci.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/25/2018] [Accepted: 12/05/2018] [Indexed: 11/23/2022]
Abstract
Knowledge of conditions affecting sperm quality is essential for efficient culture of fish for commercial purposes and conservation of species. Two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry were used to characterize the proteomic profile of Acipenser dabryanus spermatozoa relative to motility and fertilization capacity. There were differential amounts of protein in 313 spots in spermatozoa of males classified to have relatively greater or lesser spermatozoa quality. The functions of 43 of 50 selected proteins were identified. The proteins in 14 spots were involved in metabolism, and of these, proteins in 11 spots were highly abundant in spermatozoa of males categorized to have spermatozoa of greater quality, including pyruvate kinase, enolase B, phosphoglycerate kinase, lactate dehydrogenase, cytosolic malate dehydrogenase, brain creatine kinase b, Ckmb protein, and nucleoside diphosphate kinase. The proteins involved in mechanics of flagellum movement were identified, including the dynein intermediate chain, radial spoke head 1 homolog; ropporin-1-like, Bardet-Biedl syndrome 5, ADP-ribosylation factor-like protein 3, tektin-4, gamma-actin, and tubulin cytoskeleton proteins to be differentially abundant in spermatozoa that were classified relatively greater or lesser quality. Heat shock proteins, copper/zinc superoxide dismutase and peroxiredoxins, which are involved in stress response were of differential abundance in spermatozoa from males with spermatozoa in the two different classification groups. Proteins were also detected that are involved in protein folding and binding, or hydrolase activity. The results are valuable for the prediction of sperm quality and for reproduction management in A. dabryanus and other threatened species.
Collapse
|
37
|
O'Flaherty C. Peroxiredoxin 6: The Protector of Male Fertility. Antioxidants (Basel) 2018; 7:antiox7120173. [PMID: 30477206 PMCID: PMC6316438 DOI: 10.3390/antiox7120173] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 01/26/2023] Open
Abstract
The spermatozoon is a terminal cell with the unique purpose of delivering the paternal genome to the oocyte during fertilization. Once spermatozoa enter into the female reproductive tract, they count on only the antioxidant protection that they received during spermatogenesis and epididymal maturation. Peroxiredoxins (PRDXs), particularly PRDX6, are important players in the antioxidant protection and regulation of reactive oxygen species (ROS) levels in spermatozoa. PRDX6, through its peroxidase and calcium-independent phospholipase A₂ activities, plays a major role in the regulation of ROS to maintain viability and motility and allow the spermatozoon to achieve fertilizing ability during the complex process of capacitation. The absence of PRDX6 is sufficient to promote abnormal reproductive outcomes in mice that resemble what we observe in infertile men. Indeed, Prdx6-/- spermatozoa display low motility and severe DNA damage, which is translated into reduced ability to fertilize oocytes in vitro or produce a low number of pups compared to wild-type controls. This review focuses on the role of PRDX6 as the primary antioxidant enzyme that protects the spermatozoon from oxidative-stress-associated damages to protect the paternal genome and assure fertility.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Departments of Surgery (Urology Division) and Pharmacology and Therapeutics, Faculty of Medicine, McGill University and the Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|
38
|
Arevalo JA, Vázquez-Medina JP. The Role of Peroxiredoxin 6 in Cell Signaling. Antioxidants (Basel) 2018; 7:antiox7120172. [PMID: 30477202 PMCID: PMC6316032 DOI: 10.3390/antiox7120172] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6, 1-cys peroxiredoxin) is a unique member of the peroxiredoxin family that, in contrast to other mammalian peroxiredoxins, lacks a resolving cysteine and uses glutathione and π glutathione S-transferase to complete its catalytic cycle. Prdx6 is also the only peroxiredoxin capable of reducing phospholipid hydroperoxides through its glutathione peroxidase (Gpx) activity. In addition to its peroxidase activity, Prdx6 expresses acidic calcium-independent phospholipase A2 (aiPLA2) and lysophosphatidylcholine acyl transferase (LPCAT) activities in separate catalytic sites. Prdx6 plays crucial roles in lung phospholipid metabolism, lipid peroxidation repair, and inflammatory signaling. Here, we review how the distinct activities of Prdx6 are regulated during physiological and pathological conditions, in addition to the role of Prdx6 in cellular signaling and disease.
Collapse
Affiliation(s)
- José A Arevalo
- Department of Integrative Biology, University of California, Berkeley, CA, 94705, USA.
| | | |
Collapse
|
39
|
Liu J, Wang W, Liu X, Wang X, Wang J, Wang Y, Li N, Wang X. Supplementation of cryopreservation medium with TAT-Peroxiredoxin 2 fusion protein improves human sperm quality and function. Fertil Steril 2018; 110:1058-1066. [DOI: 10.1016/j.fertnstert.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 01/24/2023]
|
40
|
Role of oxidative stress in pathology of chronic prostatitis/chronic pelvic pain syndrome and male infertility and antioxidants function in ameliorating oxidative stress. Biomed Pharmacother 2018; 106:714-723. [DOI: 10.1016/j.biopha.2018.06.139] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/09/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022] Open
|
41
|
Alhama J, Fuentes-Almagro CA, Abril N, Michán C. Alterations in oxidative responses and post-translational modification caused by p,p´-DDE in Mus spretus testes reveal Cys oxidation status in proteins related to cell-redox homeostasis and male fertility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:656-669. [PMID: 29723838 DOI: 10.1016/j.scitotenv.2018.04.305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
The major derivate of DDT, 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p´-DDE), is a persistent pollutant previously associated with oxidative stress. Additionally, p,p´-DDE has been linked to several metabolic alterations related to sexual function in rodents. In this study, we analysed the effects of a non-lethal p,p´-DDE dose to Mus spretus mice in testes, focusing on oxidative damage to biomolecules, defence mechanisms against oxidative stress and post-translational protein modifications. No increase in lipid or DNA oxidation was observed, although antioxidative enzymatic defences and redox status of glutathione were altered in several ways. Global protein carbonylation and phosphorylation were significantly reduced in testes from p,p´-DDE-exposed mice; however, the total redox state of Cys thiols did not exhibit a defined pattern. We analysed the reversible redox state of specific Cys residues in detail with differential isotopic labelling and a shotgun labelling-based MS/MS proteomic approach for identification and quantification of altered peptides. Our results show that Cys residues are significantly affected by p,p´-DDE in several proteins related to oxidative stress and/or male fertility, particularly those participating in fertilization, sperm capacitation and blood coagulation. These molecular changes could explain the sexual abnormalities previously described in p,p´-DDE exposed organisms.
Collapse
Affiliation(s)
- José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carlos A Fuentes-Almagro
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Proteómica, Universidad de Córdoba, Campus de Rabanales, Edificio Ramón y Cajal, E-14071 Córdoba, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
42
|
Huang S, Cao S, Zhou T, Kong L, Liang G. 4-tert-octylphenol injures motility and viability of human sperm by affecting cAMP-PKA/PKC-tyrosine phosphorylation signals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:234-243. [PMID: 30098580 DOI: 10.1016/j.etap.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
4-tert-octylphenol (4t-OP) is a well-known xenoestrogen. Our objective was to explore the effects and molecular mechanisms of 4t-OP on human sperm. Sperm samples were exposed to 0, 0.1, or 0.3 mM 4t-OP for two hours. Results showed that both sperm viability and motility were significantly injured by 0.3 mM 4t-OP. We applied comparative proteomics to explore the molecular targets affected by 4t-OP. 81 differentially expressed (DE) proteins were identified. Bioinformatic analysis showed that these proteins were highly associated with motility and apoptosis, and were mostly enriched in cAMP-PKA/PKC-phosphorylation-associated pathway. We further verified that 0.1 mM and 0.3 mM 4t-OP significantly decreased cAMP activity of sperm. Expression of RACK1 and PRDX6 were detected by western blot (WB) to verify their tendencies in gels; antiapoptotic factor BCL2 was also detected by WB. The data indicated that 4-tert-octylphenol injures the motility and viability of human sperm probably by affecting cAMP-PKA/PKC-tyrosine phosphorylation signals.
Collapse
Affiliation(s)
- Shaoping Huang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing 210009, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Senyang Cao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China; Center of Reproductive Medicine, Yancheng Maternity and Child Health Care Hospital, Yancheng 224002, Jiangsu, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China; Central Laboratory, Wuxi Maternity and Child Health Care Hospital affiliated to Nanjing Medical University 214002, Jiangsu, China
| | - Lu Kong
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
43
|
O'Flaherty C, Matsushita-Fournier D. Reactive oxygen species and protein modifications in spermatozoa. Biol Reprod 2018; 97:577-585. [PMID: 29025014 DOI: 10.1093/biolre/iox104] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
Cellular response to reactive oxygen species (ROS) includes both reversible redox signaling and irreversible nonenzymatic reactions which depend on the nature and concentration of the ROS involved. Changes in thiol/disulfide pairs affect protein conformation, enzymatic activity, ligand binding, and protein-protein interactions. During spermatogenesis and epididymal maturation, there are ROS-dependent modifications of the sperm chromatin and flagellar proteins.The spermatozoon is regulated by redox mechanisms to acquire fertilizing ability. For this purpose, controlled amounts of ROS are necessary to assure sperm activation (motility and capacitation). Modifications of the thiol groups redox status of sperm proteins are needed for spermatozoon to achieve fertilizing ability. However, when ROS are produced at high concentrations, the established oxidative stress promotes pathological changes affecting sperm function and leading to infertility. Sperm proteins are sensitive to high levels of ROS and suffer modifications that impact on motility, capacitation, and the ability of the spermatozoon to recognize and bind to the zona pellucida and damage of sperm DNA. Thiol oxidation, tyrosine nitration, and S-glutathionylation are highlighted in this review as significant redox-dependent protein modifications associated with impairment of sperm function and alteration of paternal genome leading to infertility. Peroxiredoxins, the primary antioxidant protection in spermatozoa, are affected by most of the protein modifications described in this review. They play a significant role in both physiological and pathological processes in mammalian spermatozoa.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada.,Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,The Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - David Matsushita-Fournier
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,The Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
44
|
Fisher AB. The phospholipase A 2 activity of peroxiredoxin 6. J Lipid Res 2018; 59:1132-1147. [PMID: 29716959 DOI: 10.1194/jlr.r082578] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6) is a Ca2+-independent intracellular phospholipase A2 (called aiPLA2) that is localized to cytosol, lysosomes, and lysosomal-related organelles. Activity is minimal at cytosolic pH but is increased significantly with enzyme phosphorylation, at acidic pH, and in the presence of oxidized phospholipid substrate; maximal activity with phosphorylated aiPLA2 is ∼2 µmol/min/mg protein. Prdx6 is a "moonlighting" protein that also expresses glutathione peroxidase and lysophosphatidylcholine acyl transferase activities. The catalytic site for aiPLA2 activity is an S32-H26-D140 triad; S32-H26 is also the phospholipid binding site. Activity is inhibited by a serine "protease" inhibitor (diethyl p-nitrophenyl phosphate), an analog of the PLA2 transition state [1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol (MJ33)], and by two naturally occurring proteins (surfactant protein A and p67phox), but not by bromoenol lactone. aiPLA2 activity has important physiological roles in the turnover (synthesis and degradation) of lung surfactant phospholipids, in the repair of peroxidized cell membranes, and in the activation of NADPH oxidase type 2 (NOX2). The enzyme has been implicated in acute lung injury, carcinogenesis, neurodegenerative diseases, diabetes, male infertility, and sundry other conditions, although its specific roles have not been well defined. Protein mutations and animal models are now available to further investigate the roles of Prdx6-aiPLA2 activity in normal and pathological physiology.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine of the Department of Physiology, University of Pennsylvania, Philadelphia, PA 19103
| |
Collapse
|
45
|
Liu Q, Zhou Y, Duan R, Wei H, Jiang S, Peng J. Lower dietary n-6 : n-3 ratio and high-dose vitamin E supplementation improve sperm morphology and oxidative stress in boars. Reprod Fertil Dev 2018; 29:940-949. [PMID: 28442045 DOI: 10.1071/rd15424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/14/2016] [Indexed: 11/23/2022] Open
Abstract
A 2×2 factorial experiment (10 boars per treatment) was conducted for 16 weeks to evaluate the effects of the dietary n-6:n-3 ratio (14:1 vs 6:1) and vitamin E (200 vs 400mg kg-1) on boar sperm morphology and oxidative stress. Sperm mitochondrial membrane potential (MMP), reactive oxygen species (ROS), DNA damage (8-hydroxydeoxyguanosine; 8-OHdG), seminal lipoperoxidation (malondialdehyde; MDA) and antioxidant capacity in the serum, spermatozoa and seminal plasma were assessed as indicators of oxidative stress. Sperm production was similar among groups but increased (P<0.05) throughout the 16 weeks of the study. Although sperm α-tocopherol content, ROS and seminal MDA did not differ between the two dietary n-6:n-3 ratio treatments, enhanced antioxidant enzyme activity and MMP, but decreased 8-OHdG, were found in spermatozoa from boars consuming the 6:1 diet. The diet with the 6:1 ratio positively affected sperm morphology at Weeks 12 and 16 (P<0.05). The α-tocopherol content and antioxidant capacity increased in boars with increasing levels of vitamin E supplementation. Compared with low-dose vitamin E, high-dose vitamin E supplementation improved sperm morphology. Overall, the results indicate that an n-6:n-3 ratio of 6:1 and 400 mg/kg vitamin E have beneficial effects on sperm morphology by improving antioxidative stress.
Collapse
Affiliation(s)
- Qing Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Runjia Duan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Siwen Jiang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| |
Collapse
|
46
|
Bianchi L, Carnemolla C, Viviani V, Landi C, Pavone V, Luddi A, Piomboni P, Bini L. Soluble protein fraction of human seminal plasma. J Proteomics 2018; 174:85-100. [DOI: 10.1016/j.jprot.2017.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/04/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022]
|
47
|
Lee D, Moawad AR, Morielli T, Fernandez MC, O'Flaherty C. Peroxiredoxins prevent oxidative stress during human sperm capacitation. Mol Hum Reprod 2018; 23:106-115. [PMID: 28025393 DOI: 10.1093/molehr/gaw081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/15/2016] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION Do peroxiredoxins (PRDXs) control reactive oxygen species (ROS) levels during human sperm capacitation? SUMMARY ANSWER PRDXs are necessary to control the levels of ROS generated during capacitation allowing spermatozoa to achieve fertilizing ability. WHAT IS KNOWN ALREADY Sperm capacitation is an oxidative event that requires low and controlled amounts of ROS to trigger phosphorylation events. PRDXs are antioxidant enzymes that not only act as scavengers but also control ROS action in somatic cells. Spermatozoa from infertile men have lower levels of PRDXs (particularly of PRDX6), which are thiol-oxidized and therefore inactive. STUDY DESIGN, SIZE, DURATION Semen samples were obtained from a cohort of 20 healthy nonsmoker volunteers aged 22-30 years old over a period of 1 year. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Sperm from healthy donors was capacitated with fetal cord serum ultrafiltrate (FCSu) in the absence or presence of thiostrepton (TSP), inhibitor of 2-Cys PRDXs or 1-Hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol lithium (MJ33), inhibitor of calcium independent-phospholipase A2 (Ca2+-iPLA2) activity of PRDX6, added at different times of incubation. Capacitation was also induced by the dibutyryl cAMP+3-isobuty1-1-methylxanthine system. Sperm viability and motility were determined by the hypo-osmotic swelling test and computer-assisted semen analysis system, respectively. Capacitation was determined by the ability of spermatozoa to undergo the acrosome reaction triggered by lysophosphatidylcholine. Percentages of acrosome reaction were obtained using the FITC-conjugated Pisum sativum agglutinin assay. Phosphorylation of tyrosine residues and of protein kinase A (PKA) substrates were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis immunoblotting with specific antibodies. Actin polymerization was determined by phalloidin labeling. MAIN RESULTS AND THE ROLE OF CHANCE TSP and MJ33 prevented sperm capacitation and its associated actin polymerization in spermatozoa incubated with 10% FCSu (capacitation inducer) compared to non-capacitated controls (P < 0.05) without altering sperm viability. PKA substrates and tyrosine phosphorylations were prevented in FCSu-treated spermatozoa in a differential fashion depending on the type and the time of addition of the inhibitor used compared to non-capacitated controls (P < 0.05). TSP and MJ33 promoted an increase of lipid peroxidation in spermatozoa (P < 0.01) and these levels were higher in those spermatozoa incubated with the inhibitors and FCSu compared to those capacitated spermatozoa incubated without the inhibitors (P < 0.0001). Inhibition of 2-Cys PRDXs by TSP generated an oxidative stress in spermatozoa, affecting their viability compared to controls (P < 0.05). This oxidative stress was prevented by nuclephile D-penicillamine (PEN). MJ33 also promoted an increase of lipid peroxidation and impaired sperm viability compared to non-treated controls (P < 0.05) but its effect was not circumvented by PEN, suggesting that not only peroxidase but also Ca2+-iPLA2 activity of PRDX6 are necessary to guarantee viability in human spermatozoa. LARGE SCALE DATA Not applicable. LIMITATIONS REASONS FOR CAUTION We focused on the global effect of PRDXs inhibitors on human sperm capacitation and in two of its associated phosphorylation events. Thus, other phosphorylation events and mechanisms necessary for capacitation may also be affected. WIDER IMPLICATIONS OF THE FINDINGS PRDXs are the major antioxidant system in ejaculated spermatozoa and are necessary to allow spermatozoon to achieve fertilizing ability (capacitation and acrosome reaction). STUDY FUNDING/COMPETING INTEREST(S) This research was supported by Canadian Institutes of Health Research (MOP 133661) and the Fonds de Recherché en Santé Quebec (FRSQS #22151) to C.O. The authors have nothing to disclose.
Collapse
Affiliation(s)
- Donghyun Lee
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada
| | - Adel R Moawad
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Tania Morielli
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada
| | - Maria C Fernandez
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada
| | - Cristian O'Flaherty
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
48
|
Ryu DY, Kim KU, Kwon WS, Rahman MS, Khatun A, Pang MG. Peroxiredoxin activity is a major landmark of male fertility. Sci Rep 2017; 7:17174. [PMID: 29215052 PMCID: PMC5719347 DOI: 10.1038/s41598-017-17488-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/28/2017] [Indexed: 11/09/2022] Open
Abstract
Peroxiredoxins (PRDXs) are important antioxidant enzymes reported to have a role in sperm function and male fertility. However, how PRDXs affects male fertility remain fundamental unanswered questions. We therefore sought to investigate the role of these enzymes in sperm function and fertilisation. In this in vitro trial, mouse spermatozoa were incubated with different concentrations of conoidin A (1, 10, or 100 µM), a specific inhibitor of PRDXs. Our results demonstrated that inhibition of PRDXs by conoidin A significantly decreased the oxidized form of peroxiredoxins (PRDXs-SO3) in spermatozoa. Decreased PRDX activity was associated with a significant reduction in sperm motility parameters, viability, and intracellular ATP, whereas ROS levels, DNA fragmentation, and loss of mitochondrial membrane potential were increased. Simultaneously capacitation and the acrosome reaction were also significantly inhibited perhaps as a consequence of decreased tyrosine phosphorylation and protein kinase-A activity. In addition, fertilisation and early embryonic development were adversely affected following PRDXs inhibition in spermatozoa. Taken together, our data demonstrate that decreased PRDX activity directly affects male fertility due to negative effects on important functions and biochemical properties of spermatozoa, ultimately leading to poor fertilisation and embryonic development.
Collapse
Affiliation(s)
- Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Ki-Uk Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Amena Khatun
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea.
| |
Collapse
|
49
|
Impact of supplementation of semen extender with antioxidants on the quality of chilled or cryopreserved Arabian stallion spermatozoa. Cryobiology 2017; 79:14-20. [DOI: 10.1016/j.cryobiol.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/31/2017] [Accepted: 10/03/2017] [Indexed: 01/11/2023]
|
50
|
van Son M, Tremoen NH, Gaustad AH, Myromslien FD, Våge DI, Stenseth EB, Zeremichael TT, Grindflek E. RNA sequencing reveals candidate genes and polymorphisms related to sperm DNA integrity in testis tissue from boars. BMC Vet Res 2017; 13:362. [PMID: 29183316 PMCID: PMC5706377 DOI: 10.1186/s12917-017-1279-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
Background Sperm DNA is protected against fragmentation by a high degree of chromatin packaging. It has been demonstrated that proper chromatin packaging is important for boar fertility outcome. However, little is known about the molecular mechanisms underlying differences in sperm DNA fragmentation. Knowledge of sequence variation influencing this sperm parameter could be beneficial in selecting the best artificial insemination (AI) boars for commercial production. The aim of this study was to identify genes differentially expressed in testis tissue of Norwegian Landrace and Duroc boars, with high and low sperm DNA fragmentation index (DFI), using transcriptome sequencing. Results Altogether, 308 and 374 genes were found to display significant differences in expression level between high and low DFI in Landrace and Duroc boars, respectively. Of these genes, 71 were differentially expressed in both breeds. Gene ontology analysis revealed that significant terms in common for the two breeds included extracellular matrix, extracellular region and calcium ion binding. Moreover, different metabolic processes were enriched in Landrace and Duroc, whereas immune response terms were common in Landrace only. Variant detection identified putative polymorphisms in some of the differentially expressed genes. Validation showed that predicted high impact variants in RAMP2, GIMAP6 and three uncharacterized genes are particularly interesting for sperm DNA fragmentation in boars. Conclusions We identified differentially expressed genes between groups of boars with high and low sperm DFI, and functional annotation of these genes point towards important biochemical pathways. Moreover, variant detection identified putative polymorphisms in the differentially expressed genes. Our results provide valuable insights into the molecular network underlying DFI in pigs. Electronic supplementary material The online version of this article (10.1186/s12917-017-1279-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Nina Hårdnes Tremoen
- Department of Natural Sciences and Technology, Inland Norway University of Applied Sciences, 2318, Hamar, Norway.,Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Ann Helen Gaustad
- Topigs Norsvin, 2317, Hamar, Norway.,Department of Natural Sciences and Technology, Inland Norway University of Applied Sciences, 2318, Hamar, Norway
| | - Frøydis Deinboll Myromslien
- Department of Natural Sciences and Technology, Inland Norway University of Applied Sciences, 2318, Hamar, Norway
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Else-Berit Stenseth
- Department of Natural Sciences and Technology, Inland Norway University of Applied Sciences, 2318, Hamar, Norway
| | | | | |
Collapse
|