1
|
Sokolowski K, Turner PV, Lewis E, Wange RL, Fortin MC. Exploring rabbit as a nonrodent species for general toxicology studies. Toxicol Sci 2024; 199:29-39. [PMID: 38374304 DOI: 10.1093/toxsci/kfae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
To avoid adverse events in humans, toxicity studies in nonclinical species have been the foundation of safety evaluation in the pharmaceutical industry. However, it is recognized that working with animals in research is a privilege, and conscientious use should always respect the 3Rs: replacement, reduction, and refinement. In the wake of the shortages in routine nonrodent species and considering that nonanimal methods are not yet sufficiently mature, the value of the rabbit as a nonrodent species is worth exploring. Historically used in vaccine, cosmetic, and medical device testing, the rabbit is seldom used today as a second species in pharmaceutical development, except for embryo-fetal development studies, ophthalmic therapeutics, some medical devices and implants, and vaccines. Although several factors affect the decision of species selection, including pharmacological relevance, pharmacokinetics, and ADME considerations, there are no perfect animal models. In this forum article, we bring together experts from veterinary medicine, industry, contract research organizations, and government to explore the pros and cons, residual concerns, and data gaps regarding the use of the rabbit for general toxicity testing.
Collapse
Affiliation(s)
- Katie Sokolowski
- Safety Assessment, Development Sciences, Denali Therapeutics Inc, South San Francisco, California 94080, USA
| | - Patricia V Turner
- Global Animal Welfare & Training, Charles River Laboratories, Wilmington, Massachusetts 01887, USA
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Elise Lewis
- Safety Assessment, Charles River Laboratories, Horsham, Pennsylvania 19044, USA
| | - Ronald L Wange
- Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Marie C Fortin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
2
|
Faraj P, Størset E, Hole K, Smith G, Molden E, Dietrichs ES. Pro-arrhythmic effect of escitalopram and citalopram at serum concentrations commonly observed in older patients - a study based on a cohort of 19,742 patients. EBioMedicine 2023; 95:104779. [PMID: 37639937 PMCID: PMC10474154 DOI: 10.1016/j.ebiom.2023.104779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND For a decade, patients have been advised against using high citalopram- and escitalopram-doses due to risk for ventricular arrhythmia and cardiac arrest. Still, these drugs are widely used to treat depression and anxiety especially in older patients. It is unclear why they are cardiotoxic and at what serum concentrations patients are at risk for arrhythmias. Thus, how many patients that are at risk for iatrogenic cardiac arrest is unknown. METHODS We studied the arrhythmogenic effects of citalopram, escitalopram and their metabolites on human cardiomyocytes. Concentrations showing pro-arrhythmic activity were compared with observed drug and metabolite serum concentrations in a cohort of 19,742 patients (age 12-105 years) using escitalopram or citalopram in Norway (2010-2019). As arrhythmia-risk is related to maximum serum concentration, this was simulated for different age-groups from the escitalopram patient material. FINDINGS Therapeutic concentrations of both citalopram and escitalopram but not their metabolites showed pro-arrhythmic changes in the human cardiac action potential. Due to age-dependent reduction of drug clearance, the proportion of patients above threshold for arrhythmia-risk increased with age. 20% of patients >65 years were predicted to reach potentially pro-arrhythmic concentrations, following intake of 10 mg escitalopram. INTERPRETATION All patients that are using escitalopram or citalopram and have genetic disposition for acquired long-QT syndrome, are >65 years, are using additional pro-arrhythmic drugs or have predisposition for arrhythmias, should be monitored with therapeutic drug monitoring (TDM) to avoid exposure to potentially cardiotoxic concentrations. Serum concentrations should be kept below 100 nM, to reduce arrhythmia-risk. FUNDING This study was funded by The Research Council of Norway (project number: 324062).
Collapse
Affiliation(s)
- Pari Faraj
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Elisabet Størset
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Erik Sveberg Dietrichs
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Institute of Oral Biology, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Joyce RL, Tibbs GR, David Warren J, Costa CJ, Aromolaran K, Lea Sanford R, Andersen OS, Li Z, Zhang G, Willis DE, Goldstein PA. Probucol is anti-hyperalgesic in a mouse peripheral nerve injury model of neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100141. [PMID: 38099280 PMCID: PMC10719523 DOI: 10.1016/j.ynpai.2023.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 12/17/2023]
Abstract
2,6-di-tert-butylphenol (2,6-DTBP) ameliorates mechanical allodynia and thermal hyperalgesia produced by partial sciatic nerve ligation in mice, and selectively inhibits HCN1 channel gating. We hypothesized that the clinically utilized non-anesthetic dimerized congener of 2,6-DTBP, probucol (2,6-di-tert-butyl-4-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)sulfanylpropan-2-ylsulfanyl]phenol), would relieve the neuropathic phenotype that results from peripheral nerve damage, and that the anti-hyperalgesic efficacy in vivo would correlate with HCN1 channel inhibition in vitro. A single oral dose of probucol (800 mg/kg) relieved mechanical allodynia and thermal hyperalgesia in a mouse spared-nerve injury neuropathic pain model. While the low aqueous solubility of probucol precluded assessment of its possible interaction with HCN1 channels, our results, in conjunction with recent data demonstrating that probucol reduces lipopolysaccharide-induced mechanical allodynia and thermal hyperalgesia, support the testing/development of probucol as a non-opioid, oral antihyperalgesic albeit one of unknown mechanistic action.
Collapse
Affiliation(s)
- Rebecca L. Joyce
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Gareth R. Tibbs
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - J. David Warren
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | | | - Kelly Aromolaran
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - R. Lea Sanford
- Dept. of Physiology & Biophysics, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Olaf S. Andersen
- Dept. of Physiology & Biophysics, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Zhucui Li
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | - Guoan Zhang
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | - Dianna E. Willis
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Peter A. Goldstein
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
- Dept. of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Yong U, Kim D, Kim H, Hwang DG, Cho S, Nam H, Kim S, Kim T, Jeong U, Kim K, Chung WK, Yeo WH, Jang J. Biohybrid 3D Printing of a Tissue-Sensor Platform for Wireless, Real-Time, and Continuous Monitoring of Drug-Induced Cardiotoxicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208983. [PMID: 36528341 DOI: 10.1002/adma.202208983] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Drug-induced cardiotoxicity is regarded as a major hurdle in the early stages of drug development. Although there are various methods for preclinical cardiotoxicity tests, they cannot completely predict the cardiotoxic potential of a compound due to the lack of physiological relevance. Recently, 3D engineered heart tissue (EHT) has been used to investigate cardiac muscle functions as well as pharmacological effects by exhibiting physiological auxotonic contractions. However, there is still no adequate platform for continuous monitoring to test acute and chronic pharmacological effects in vitro. Here, a biohybrid 3D printing method for fabricating a tissue-sensor platform, composed of a bipillar-grafted strain gauge sensor and EHT, is first introduced. Two pillars are three-dimensionally printed as grafts onto a strain gauge-embedded substrate to promote the EHT contractility and guide the self-assembly of the EHTs along with the strain gauge. In addition, the integration of a wireless multi-channel electronic system allows for continuous monitoring of the EHT contractile force by the tissue-sensor platform and, ultimately, for the observation of the acute and chronic drug effects of cardiotoxicants. In summary, biohybrid 3D printing technology is expected to be a potential fabrication method to provide a next-generation tissue-sensor platform for an effective drug development process.
Collapse
Affiliation(s)
- Uijung Yong
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea
| | - Donghwan Kim
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37666, Republic of Korea
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dong Gyu Hwang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37666, Republic of Korea
| | - Sungkeon Cho
- Department of Mechanical Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Hyoryung Nam
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea
| | - Sejin Kim
- Department of Mechanical Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Taeyeong Kim
- Department of Materials Science and Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Keehoon Kim
- Department of Mechanical Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Wan Kyun Chung
- Department of Mechanical Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, 30332, USA
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jinah Jang
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37666, Republic of Korea
- Department of Mechanical Engineering, POSTECH, Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Qu Y, Gao B, Arimura Z, Fang M, Vargas HM. Comprehensive in vitro pro-arrhythmic assays demonstrate that omecamtiv mecarbil has low pro-arrhythmic risk. Clin Transl Sci 2021; 14:1600-1610. [PMID: 33955165 PMCID: PMC8301593 DOI: 10.1111/cts.13039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 01/10/2023] Open
Abstract
Omecamtiv mecarbil (OM) is a myosin activator (myotrope), developed as a potential therapeutic agent for heart failure with reduced ejection fraction. To characterize the potential pro-arrhythmic risk of this novel sarcomere activator, we evaluated OM in a series of International Conference on Harmonization S7B core and follow-up assays, including an in silico action potential (AP) model. OM was tested in: (i) hERG, Nav1.5 peak, and Cav1.2 channel assays; (ii) in silico computation in a human ventricular AP (hVAP) population model; (iii) AP recordings in canine cardiac Purkinje fibers (PF); and (iv) electrocardiography analysis in isolated rabbit hearts (IRHs). OM had low potency in the hERG (half-maximal inhibitory concentration [IC50 ] = 125.5 µM) and Nav1.5 and Cav1.2 assays (IC50 > 300 µM). These potency values were used as inputs to investigate the occurrence of repolarization abnormalities (biomarkers of pro-arrhythmia) in an hVAP model over a wide range of OM concentrations. The outcome of hVAP analysis indicated low pro-arrhythmia risk at OM concentration up to 30 µM (100-fold the effective free therapeutic plasma concentration). In the isolated canine PF assay, OM shortened AP duration (APD)60 and APD90 significantly from 3 to 30 µM. In perfused IRH, ventricular repolarization (corrected QT and corrected JT intervals) was decreased significantly at greater than or equal to 1 µM OM. In summary, the comprehensive proarrhythmic assessment in human and non-rodent cardiac models provided data indicative that OM did not delay ventricular repolarization at therapeutic relevant concentrations, consistent with clinical findings.
Collapse
Affiliation(s)
- Yusheng Qu
- Amgen ResearchSafety Pharmacology and Animal Research CenterAmgen Inc.Thousand OaksCaliforniaUSA
| | - BaoXi Gao
- Amgen ResearchSafety Pharmacology and Animal Research CenterAmgen Inc.Thousand OaksCaliforniaUSA
| | - Ziva Arimura
- Amgen ResearchSafety Pharmacology and Animal Research CenterAmgen Inc.Thousand OaksCaliforniaUSA
| | - Mei Fang
- Amgen ResearchSafety Pharmacology and Animal Research CenterAmgen Inc.Thousand OaksCaliforniaUSA
| | - Hugo M. Vargas
- Amgen ResearchSafety Pharmacology and Animal Research CenterAmgen Inc.Thousand OaksCaliforniaUSA
| |
Collapse
|
6
|
Pfeiffer ER, Vega R, McDonough PM, Price JH, Whittaker R. Specific prediction of clinical QT prolongation by kinetic image cytometry in human stem cell derived cardiomyocytes. J Pharmacol Toxicol Methods 2016; 81:263-73. [PMID: 27095424 DOI: 10.1016/j.vascn.2016.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A priority in the development and approval of new drugs is assessment of cardiovascular risk. Current methodologies for screening compounds (e.g. HERG testing) for proarrhythmic risk lead to many false positive and false negative results, resulting in the attrition of potentially therapeutic compounds in early development, and the advancement of other candidates that cause adverse effects. With improvements in the technologies of high content imaging and human stem cell differentiation, it is now possible to directly screen compounds for arrhythmogenic tendencies in human stem cell derived cardiomyocytes (hSC-CMs). METHODS A training panel of 90 compounds consisting of roughly equal numbers of QT-prolonging and negative control (non-QT-prolonging) compounds, and a follow-up blinded study of 35 compounds including 16 from the 90 compound panel and 2 duplicates, were evaluated for prolongation of the calcium transient in hSC-CMs using kinetic image cytometry (KIC), a specialized form of high content analysis. RESULTS The KIC-hSC-CM assay identified training compounds that prolong the calcium transient with 98% specificity, 97% precision, 80% sensitivity, and 89% accuracy in predicting clinical QT prolongation by these compounds. The follow-up study of 35 blinded compounds confirmed the reproducibility and strong diagnostic accuracy of the assay. DISCUSSION The correlation of the KIC-hSC-CM results to clinical observations met or surpassed traditional preclinical assessment of cardiac risk utilizing animal models. Thus, the KIC-hSC-CM assay, which can be accomplished in high throughput and at relatively low cost, is an effective new model system for testing chemicals for cardiovascular risk.
Collapse
Affiliation(s)
| | - Raquel Vega
- Vala Sciences, Inc., San Diego, CA 92121, United States
| | | | | | | |
Collapse
|
7
|
Lee HA, Hyun SA, Park SG, Kim KS, Kim SJ. Comparison of electrophysiological effects of calcium channel blockers on cardiac repolarization. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:119-27. [PMID: 26807031 PMCID: PMC4722185 DOI: 10.4196/kjpp.2016.20.1.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/13/2022]
Abstract
Dihydropyridine (DHP) calcium channel blockers (CCBs) have been widely used to treat of several cardiovascular diseases. An excessive shortening of action potential duration (APD) due to the reduction of Ca2+ channel current (ICa) might increase the risk of arrhythmia. In this study we investigated the electrophysiological effects of nicardipine (NIC), isradipine (ISR), and amlodipine (AML) on the cardiac APD in rabbit Purkinje fibers, voltage-gated K+ channel currents (IKr, IKs) and voltage-gated Na+ channel current (INa). The concentration-dependent inhibition of Ca2+ channel currents (ICa) was examined in rat cardiomyocytes; these CCBs have similar potency on ICa channel blocking with IC50 (the half-maximum inhibiting concentration) values of 0.142, 0.229, and 0.227 nM on NIC, ISR, and AML, respectively. However, ISR shortened both APD50 and APD90 already at 1 µM whereas NIC and AML shortened APD50 but not APD90 up to 30 µM. According to ion channel studies, NIC and AML concentration-dependently inhibited IKr and IKs while ISR had only partial inhibitory effects (<50% at 30 µM). Inhibition of INa was similarly observed in the three CCBs. Since the IKr and IKs mainly contribute to cardiac repolarization, their inhibition by NIC and AML could compensate for the AP shortening effects due to the block of ICa.
Collapse
Affiliation(s)
- Hyang-Ae Lee
- Next-generation Pharmaceutical Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea.; Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.; Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34113, Korea
| | - Sung-Ae Hyun
- Next-generation Pharmaceutical Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Sung-Gurl Park
- Next-generation Pharmaceutical Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Ki-Suk Kim
- Next-generation Pharmaceutical Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea.; Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34113, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
8
|
Pugsley MK, Curtis MJ, Hayes ES. Biophysics and Molecular Biology of Cardiac Ion Channels for the Safety Pharmacologist. Handb Exp Pharmacol 2015; 229:149-203. [PMID: 26091640 DOI: 10.1007/978-3-662-46943-9_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cardiac safety pharmacology is a continuously evolving discipline that uses the basic principles of pharmacology in a regulatory-driven process to generate data to inform risk/benefit assessment of a new chemical entity (NCE). The aim of cardiac safety pharmacology is to characterise the pharmacodynamic/pharmacokinetic (PK/PD) relationship of a drug's adverse effects on the heart using continuously evolving methodology. Unlike Toxicology, safety pharmacology includes within its remit a regulatory requirement to predict the risk of rare cardiotoxic (potentially lethal) events such as torsades de pointes (TdP), which is statistically associated with drug-induced changes in the QT interval of the ECG due to blockade of I Kr or K v11.1 current encoded by hERG. This gives safety pharmacology its unique character. The key issues for the safety pharmacology assessment of a drug on the heart are detection of an adverse effect liability, projection of the data into safety margin calculation and clinical safety monitoring. This chapter will briefly review the current cardiac safety pharmacology paradigm outlined in the ICH S7A and ICH S7B guidance documents and the non-clinical models and methods used in the evaluation of new chemical entities in order to define the integrated risk assessment for submission to regulatory authorities. An overview of how the present cardiac paradigm was developed will be discussed, explaining how it was based upon marketing authorisation withdrawal of many non-cardiovascular compounds due to unanticipated proarrhythmic effects. The role of related biomarkers (of cardiac repolarisation, e.g. prolongation of the QT interval of the ECG) will be considered. We will also provide an overview of the 'non-hERG-centric' concepts utilised in the evolving comprehensive in vitro proarrhythmia assay (CIPA) that details conduct of the proposed ion channel battery test, use of human stem cells and application of in silico models to early cardiac safety assessment. The summary of our current understanding of the triggers of TdP will include the interplay between action potential (AP) prolongation, early and delayed afterdepolarisation and substrates for re-entry arrhythmias.
Collapse
Affiliation(s)
- Michael K Pugsley
- Global Safety Pharmacology and Toxicology/Pathology, Janssen Pharmaceuticals LLC, 1000 Route 202 South, Raritan, NJ, 08869, USA,
| | | | | |
Collapse
|
9
|
Himmel HM, Bussek A, Hoffmann M, Beckmann R, Lohmann H, Schmidt M, Wettwer E. Field and action potential recordings in heart slices: correlation with established in vitro and in vivo models. Br J Pharmacol 2012; 166:276-96. [PMID: 22074238 PMCID: PMC3415654 DOI: 10.1111/j.1476-5381.2011.01775.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Action potential (AP) recordings in ex vivo heart preparations constitute an important component of the preclinical cardiac safety assessment according to the ICH S7B guideline. Most AP measurement models are sensitive, predictive and informative but suffer from a low throughput. Here, effects of selected anti-arrhythmics (flecainide, quinidine, atenolol, sotalol, dofetilide, nifedipine, verapamil) on field/action potentials (FP/AP) of guinea pig and rabbit ventricular slices are presented and compared with data from established in vitro and in vivo models. EXPERIMENTAL APPROACH Data from measurements of membrane currents (hERG, I(Na) ), AP/FP (guinea pig and rabbit ventricular slices), AP (rabbit Purkinje fibre), haemodynamic/ECG parameters (conscious, telemetered dog) were collected, compared and correlated to complementary published data (focused literature search). KEY RESULTS The selected anti-arrhythmics, flecainide, quinidine, atenolol, sotalol, dofetilide, nifedipine and verapamil, influenced the shape of AP/FP of guinea pig and rabbit ventricular slices in a manner similar to that observed for rabbit PF. The findings obtained from slice preparations are in line with measurements of membrane currents in vitro, papillary muscle AP in vitro and haemodynamic/ECG parameters from conscious dogs in vivo, and were also corroborated by published data. CONCLUSION AND IMPLICATIONS FP and AP recordings from heart slices correlated well with established in vitro and in vivo models in terms of pharmacology and predictability. Heart slice preparations yield similar results as papillary muscle but offer enhanced throughput for mechanistic investigations and may substantially reduce the use of laboratory animals.
Collapse
|
10
|
Lu HR, Vlaminckx E, Cools F, Gallacher DJ. Direct effects of arsenic trioxide on action potentials in isolated cardiac tissues: importance of the choice of species, type of cardiac tissue and perfusion time. J Pharmacol Toxicol Methods 2012; 66:135-44. [PMID: 22445855 DOI: 10.1016/j.vascn.2012.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/29/2012] [Accepted: 03/07/2012] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The aim of the present study was to evaluate direct/acute effects of arsenic trioxide on action potentials (APs) in isolated cardiac tissues, and to investigate if the choice of species and tissue and the duration of the perfusion play a role in arsenic-induced acute/direct prolongation of AP/QT. METHODS AND RESULTS Direct electrophysiological effects of arsenic trioxide were measured in cardiac tissues isolated from four different species using micro-electrode recording. Arsenic (after 30 to 95 min perfusion at 10 μM) significantly prolonged APD(90), increased triangulation of the AP and elicited early afterdepolarizations (EADs) only in isolated guinea-pig and dog Purkinje fibers but not in rabbit and porcine (minipig) Purkinje fibers. Arsenic induced a prolongation of the APD(90) and increases in triangulation and the occurrence of EADs was not observed in papillary muscles of guinea-pigs and rabbits. Arsenic at 4 increasing concentrations from 0.1 μM to 10 μM at the standard perfusion-time of 15 min per concentration, and after a continuous 90-min perfusion at 1 μM and 1 Hz did not induce these direct effects on APD(90), triangulation and EADs in isolated guinea-pig Purkinje fibers, but it at 1 µM elicited EADs in 2 out of 7 preparations after 90 min at 0.2 Hz. DISCUSSION The present study demonstrates that the choice of species and cardiac tissue as well as perfusion-time play important roles in arsenic-induced direct/acute effects on APD(90) and induction of EADs in vitro.
Collapse
Affiliation(s)
- Hua Rong Lu
- Center of Excellence for Cardiovascular Safety Research & Mechanistic Pharmacology, Janssen Research & Development, Division of Janssen Pharmaceutica N.V., Belgium.
| | | | | | | |
Collapse
|
11
|
Supplemental Studies for Cardiovascular Risk Assessment in Safety Pharmacology: A Critical Overview. Cardiovasc Toxicol 2011; 11:285-307. [DOI: 10.1007/s12012-011-9133-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Corrias A, Giles W, Rodriguez B. Ionic mechanisms of electrophysiological properties and repolarization abnormalities in rabbit Purkinje fibers. Am J Physiol Heart Circ Physiol 2011; 300:H1806-13. [PMID: 21335469 DOI: 10.1152/ajpheart.01170.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purkinje cells play an important role in drug-induced arrhythmogenesis and are widely used in preclinical drug safety assessments. Repolarization abnormalities such as action potential (AP) prolongation and early afterdeploarizations (EAD) are often observed in vitro upon pharmacological interventions. However, because drugs do not act on only one defined target, it is often difficult to fully explain the mechanisms of action and their potential arrhythmogenicity. Computational models, when appropriately detailed and validated, can be used to gain mechanistic insights into the mechanisms of action of certain drugs. Nevertheless, no model of Purkinje electrophysiology that is able to reproduce characteristic Purkinje responses to drug-induced changes in ionic current conductances such as AP prolongation and EAD generation currently exists. In this study, a novel biophysically detailed model of rabbit Purkinje electrophysiology was developed by integration of data from voltage-clamp and AP experimental recordings. Upon validation, we demonstrate that the model reproduces many key electrophysiological properties of rabbit Purkinje cells. These include: AP morphology and duration, both input resistance and rate dependence properties as well as response to hyperkalemia. Pharmacological interventions such as inward rectifier K(+) current and rapid delayed rectifier K(+) current block as well as late Na(+) current increase result in significant AP changes. However, enhanced L-type Ca(2+) current (i(CaL)) dominates in EAD genesis in Purkinje fibers. In addition, i(CaL) inactivation dynamics and intercellular coupling in tissue strongly modulate EAD formation. We conclude that EAD generation in Purkinje cells is mediated by an increase in i(CaL) and modulated by its inactivation kinetics.
Collapse
|
13
|
A step towards characterisation of electrophysiological profile of torsadogenic drugs. J Pharmacol Toxicol Methods 2011; 63:269-78. [PMID: 21224008 DOI: 10.1016/j.vascn.2011.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/27/2010] [Accepted: 01/03/2011] [Indexed: 12/16/2022]
Abstract
INTRODUCTION In a previous study, two electrophysiological patterns for torsadogenic drugs were characterised in the model of isolated canine Purkinje fibres from their respective effects on action potential. This study was designed to elucidate the possible mechanisms underlying these two electrophysiological profiles. METHODS Effects of representative torsadogenic agents and non torsadogenic drugs on I(Kr), I(Ks), I(K1), I(Na) and I(CaL) were studied in transfected HEK 293 cells using the path-clamp method as well as in conscious beagle dogs and cynomolgus monkeys by telemetry. RESULTS Patch-clamp studies confirmed that torsadogenic molecules could be discriminated into at least two subgroups. The first subgroup can be defined as apparently pure I(Kr) blockers. The second subgroup can be defined as I(Kr) blockers with ancillary properties on sodium and/or calcium channels which counterbalance the I(Kr) prolongation component. This discrimination is transposable to the telemetered cynomolgus monkey model in terms of QT prolongation but not to the telemetered beagle dog model. This latter inter-species difference could be related to the sympathetic/parasympathetic balance and could involve reserve repolarisation dependent mechanisms. DISCUSSION The confirmation that torsadogenic drugs might have at least two different electrophysiological profiles should be taken into consideration in preclinical safety pharmacology studies because it increases the value of the cynomolgus monkey model in two particular situations: firstly when an NCE causes sympathetic activation and secondly, when an NCE exhibits a pure I(Kr) blocker pattern independently of its potency to block HERG channels.
Collapse
|
14
|
Puddu PE, Rouet R, Morel M. [How to measure high V(max) values by systems aimed at action potential recording?]. Therapie 2010; 65:491-8. [PMID: 21144485 DOI: 10.2515/therapie/2010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/27/2010] [Indexed: 11/20/2022]
Abstract
This investigation was aimed at increasing both accuracy and performance of systems used to obtain and measure V(max) (dV/dt(max)), an important yet underevaluated physiological parameter. A method is presented to correct measured V(max) (V(mes)) based on an algorythm adapted to 2 tested systems: IOX and DataPac. We also investigated 89 rabbit Purkinje fibres (before and 30 min following drugs effective on ventricular repolarization) to derive experimental electrophysiological correlations. In fact, no method may be reliable without knowing its accuracy over a large scale of representative physiological values. This is why it is essential to estimate accuracy, precision and fidelity of systems aimed at action potential recording before pharmacological or pathophysiological investigations are performed, even more if therapeutical consequences might ensue. A formula is presented to obtain real V(max), based on V(mes) [V(max)=V(mes)/1 - (tau.V(mes)/APA)(2.p)], where tau=49.64 µs, p=0.72 and APA=action potential amplitude. This formula is reliable up to V(max) values of 1000 V/s which may be seen in rabbit Purkinje fibres, a classical model for in vitro studies. Using this formula may have practical implications in cellular electrophysiology which may impact on safety pharmacology and therapeutics.
Collapse
Affiliation(s)
- Paolo-Emilio Puddu
- Département du Cœur et Gros Vaisseaux « Attilio Reale », Unité Complexe de Biotechnologies Appliquées à la Cardiologie (BMC09), Université de Rome « La Sapienza », Rome, Italie.
| | | | | |
Collapse
|
15
|
Corrias A, Rodriguez B. A novel biophysically-detailed mathematical model of rabbit Purkinje cell electrophysiology. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:2658-61. [PMID: 21096192 DOI: 10.1109/iembs.2010.5626614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Purkinje fibres play an important role in cardiac conduction and have been implicated in arrhythmia in presence of diseased states, genetic mutations, or adverse side effects of drugs. For these reasons, the Purkinje assay is commonly used in pre-clinical in vitro drug assessment of arrhythmic risk. Several investigators have pointed out that rabbit Purkinje cells, compared to other species, have a better sensitivity in detecting arrhythmic risk.
Collapse
Affiliation(s)
- Alberto Corrias
- Computing Laboratory, University of Oxford, Parks Road, OX13QD. United Kingdom.
| | | |
Collapse
|
16
|
Roche M, Renauleaud C, Ballet V, Doubovetzky M, Guillon JM. The isolated rabbit heart and Purkinje fibers as models for identifying proarrhythmic liability. J Pharmacol Toxicol Methods 2010; 61:238-50. [PMID: 20117224 DOI: 10.1016/j.vascn.2010.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 01/20/2010] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Delayed ventricular repolarization is associated with rare, but often fatal, polymorphic tachyarrhythmias named Torsades de Pointes. ICH S7B guideline recommends an integrated approach for cardiovascular preclinical evaluation of new drug candidates, including action potential assays (as a Purkinje fiber test) but also proarrhythmia models. The aim of this preliminary study was to compare the respective value of two preclinical in vitro rabbit cardiac preparations-the Purkinje fiber and the isolated perfused heart (Langendorff method)-based on effects of dofetilide, a selective IKr inhibitor. METHODS Transmembrane action potentials from rabbit Purkinje fibers were recorded using a conventional intracellular glass microelectrode. Electrocardiograms from rabbit isolated hearts were evaluated for QRS, QT and T wave durations (Tpeak-Tend). The pacing protocol was the same for both preparations (basal rate of 80 bpm and pacing of 40, 60 and 140 bpm). Dofetilide was tested in both systems at concentrations of 1, 3 and 10 nmol/L. RESULTS In Purkinje fibers dofetilide induced a concentration- and reverse use-dependent increase in action potential durations measured at 50 and 90% of repolarization. At 10 nmol/L, only 3/10 fibers showed early after depolarizations. In the isolated heart model, dofetilide also induced a similar concentration- and reverse use-dependent increase in QT-interval. From 3 nmol/L, major changes in T wave morphology, R-on-T extrasystoles and TdP were observed, mainly at low rate. Prior to arrhythmias, T wave shape and duration were markedly altered suggesting an increase in the heterogeneity of cardiac ventricular repolarization. CONCLUSIONS The effects of dofetilide were comparable in the two models for delayed repolarization but the isolated heart appears to be a better predictor for arrhythmias and a unique in vitro model to assess arrhythmogenic potential of QT prolonging compounds at least when associated with IKr/hERG inhibition.
Collapse
Affiliation(s)
- Michel Roche
- Department of Drug Safety Evaluation, Safety Pharmacology Group, Sanofi-Aventis Recherche & Développement, 3 Digue d'Alfortville, 94140 Alfortville, France
| | | | | | | | | |
Collapse
|
17
|
Raschi E, Ceccarini L, De Ponti F, Recanatini M. hERG-related drug toxicity and models for predicting hERG liability and QT prolongation. Expert Opin Drug Metab Toxicol 2009; 5:1005-21. [PMID: 19572824 DOI: 10.1517/17425250903055070] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND hERG K(+) channels have been recognized as a primary antitarget in safety pharmacology. Their blockade, caused by several drugs with different therapeutic indications, may lead to QT prolongation and, eventually, to potentially fatal arrhythmia, namely torsade de pointes. Therefore, a number of preclinical models have been developed to predict hERG liability early in the drug development process. OBJECTIVE The aim of this review is to outline the present state of the art on drug-induced hERG blockade, providing insights on the predictive value of in vitro and in silico models for hERG liability. METHODS On the basis of latest reports, high-throughput preclinical models have been discussed outlining advantages and limitations. CONCLUSION Although no single model has an absolute value, an integrated risk assessment is recommended to predict the pro-arrhythmic risk of a given drug. This prediction requires expertise from different areas and should encompass emerging issues such as interference with hERG trafficking and QT shortening.
Collapse
Affiliation(s)
- Emanuel Raschi
- University of Bologna, Department of Pharmacology, Italy
| | | | | | | |
Collapse
|
18
|
Weissenburger J, Funck-Brentano C, Jaillon P, Charbit B. Droperidol and ondansetron in vitro electrophysiological drug interaction study. Fundam Clin Pharmacol 2009; 23:719-26. [DOI: 10.1111/j.1472-8206.2009.00735.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Guo L, Dong Z, Guthrie H. Validation of a guinea pig Langendorff heart model for assessing potential cardiovascular liability of drug candidates. J Pharmacol Toxicol Methods 2009; 60:130-51. [DOI: 10.1016/j.vascn.2009.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 07/06/2009] [Indexed: 02/02/2023]
|
20
|
Hancox JC, McPate MJ, El Harchi A, Zhang YH. The hERG potassium channel and hERG screening for drug-induced torsades de pointes. Pharmacol Ther 2008; 119:118-32. [PMID: 18616963 DOI: 10.1016/j.pharmthera.2008.05.009] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 01/08/2023]
Abstract
Drug-induced torsades de pointes (TdP) arrhythmia is a major safety concern in the process of drug design and development. The incidence of TdP tends to be low, so early pre-clinical screens rely on surrogate markers of TdP to highlight potential problems with new drugs. hERG (human ether-à-go-go-related gene, alternative nomenclature KCNH2) is responsible for channels mediating the 'rapid' delayed rectifier K+ current (IKr) which plays an important role in ventricular repolarization. Pharmacological inhibition of native IKr and of recombinant hERG channels is a shared feature of diverse drugs associated with TdP. In vitro hERG assays therefore form a key element of an integrated assessment of TdP liability, with patch-clamp electrophysiology offering a 'gold standard'. However, whilst clearly necessary, hERG assays cannot be assumed automatically to provide sufficient information, when considered in isolation, to differentiate 'safe' from 'dangerous' drugs. Other relevant factors include therapeutic plasma concentration, drug metabolism and active metabolites, severity of target condition and drug effects on other cardiac ion channels that may mitigate or exacerbate effects of hERG blockade. Increased understanding of the nature of drug-hERG channel interactions may ultimately help eliminate potential hERG blockade early in the design and development process. Currently, for promising drug candidates integration of data from hERG assays with information from other pre-clinical safety screens remains essential.
Collapse
Affiliation(s)
- Jules C Hancox
- Department of Physiology and Pharmacology, Cardiovascular Research Laboratories, Bristol Heart Institute, School of Medical Sciences, The University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom.
| | | | | | | |
Collapse
|
21
|
|
22
|
Raschi E, Vasina V, Poluzzi E, De Ponti F. The hERG K+ channel: target and antitarget strategies in drug development. Pharmacol Res 2008; 57:181-95. [PMID: 18329284 DOI: 10.1016/j.phrs.2008.01.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 12/16/2022]
Abstract
The human ether-à-go-go related gene (hERG) K+ channel is of great interest for both basic researchers and clinicians because its blockade by drugs can lead to QT prolongation, which is a risk factor for torsades de pointes, a potentially life-threatening arrhythmia. A growing list of agents with "QT liability" have been withdrawn from the market or restricted in their use, whereas others did not even receive regulatory approval for this reason. Thus, hERG K+ channels have become a primary antitarget (i.e. an unwanted target) in drug development because their blockade causes potentially serious side effects. On the other hand, the recent identification and functional characterization of hERG K+ channels not only in the heart, but also in several other tissues (e.g. neurons, smooth muscle and cancer cells) may have far reaching implications for drug development for a possible exploitation of hERG as a target, especially in oncology and cardiology.
Collapse
Affiliation(s)
- Emanuel Raschi
- Department of Pharmacology, University of Bologna, Via Irnerio, 48, I-40126 Bologna BO, Bologna, Italy
| | | | | | | |
Collapse
|
23
|
Steidl-Nichols JV, Hanton G, Leaney J, Liu RC, Leishman D, McHarg A, Wallis R. Impact of study design on proarrhythmia prediction in the SCREENIT rabbit isolated heart model. J Pharmacol Toxicol Methods 2008; 57:9-22. [PMID: 17707659 DOI: 10.1016/j.vascn.2007.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 06/22/2007] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Prediction of the propensity of a compound to induce Torsades de Pointes continues to be a formidable challenge to the pharmaceutical industry. Development of an in vitro model for assessment of proarrhythmic potential offers the advantage of higher throughput and reduced compound quantity requirements when compared to in vivo studies. A rabbit isolated heart model (SCREENIT) has been reported to identify compounds with proarrhythmic potential based on the observance of compound-induced triangulation and instability of the monophasic action potential (MAP), ectopic beats, and reverse-use dependence of prolongation of the MAP duration. Previous reports have indicated that this model qualitatively identifies proarrhythmic compounds and suggest the use of this model to assign safety margins for human clinical use. The intent of this series of studies was to evaluate the impact of study design on the proarrhythmic concentration predicted by this model. METHODS Nine compounds of varying proarrhythmic potential and a negative control were tested in a blinded fashion using a series of different experimental protocols: Compounds were tested at multiple concentration ranges and extended perfusion times were also evaluated. RESULTS In general when the dataset is viewed as a whole, the model did identify proarrhythmic compounds, however the concentration at which action potential prolongation, triangulation, instability, reverse-use dependence and ectopic beats occurred often varied based on the concentration range selected. Further analysis using extended compound perfusion times demonstrated that variability may be due in part to lack of adequate equilibration of compound with the cardiac tissue. DISCUSSION We report that the model correctly identified proarrhythmic agents in a qualitative manner, but that study design impacts the proarrhythmic concentration derived from the model.
Collapse
Affiliation(s)
- Jill V Steidl-Nichols
- Global Safety Pharmacology, Pfizer Global Research and Development, La Jolla Laboratories, 10646 Science Center Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Choice of cardiac tissue in vitro plays an important role in assessing the risk of drug-induced cardiac arrhythmias in human: Beyond QT prolongation. J Pharmacol Toxicol Methods 2008; 57:1-8. [DOI: 10.1016/j.vascn.2007.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 06/07/2007] [Indexed: 11/20/2022]
|
25
|
Strevel EL, Ing DJ, Siu LL. Molecularly Targeted Oncology Therapeutics and Prolongation of the QT Interval. J Clin Oncol 2007; 25:3362-71. [PMID: 17664484 DOI: 10.1200/jco.2006.09.6925] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Investigation and utilization of molecularly targeted agents has induced a number of drug adverse effects that are not typically associated with conventional chemotherapy. QT interval prolongation, a cardiac toxicity that increases the risk of fatal arrhythmia, is associated with several novel oncology therapies. Classes of molecularly targeted agents with described QT effects include histone deacetylase inhibitors, multitargeted tyrosine kinase inhibitors, vascular disruption agents, farnesyl protein transferase inhibitors, Src/Abl kinase inhibitors, and protein kinase C inhibitors. Concurrently, guidelines for monitoring the QT-prolonging effects of drugs under development have become increasingly rigorous. Although these guidelines apply to anticancer agents, they were not specifically designed for the oncology patient population. This article will review the pathophysiology of QT prolongation, methods of preclinical QT assessment, and current guidelines for QT evaluation in early phase trials. Additionally, molecularly targeted agents with QT effects will be summarized, and mechanisms of addressing this toxicity in the context of oncology drug development will be explored.
Collapse
Affiliation(s)
- Elizabeth L Strevel
- Division of Medical Oncology and Hematology, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | | | | |
Collapse
|
26
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2006. [DOI: 10.1002/pds.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|