1
|
Sanz-Marco A, Esperilla D, Montesinos-Magraner M, Vila C, Muñoz MC, Pedro JR, Blay G. A Cu-BOX catalysed enantioselective Mukaiyama-aldol reaction with difluorinated silyl enol ethers and acylpyridine N-oxides. Org Biomol Chem 2023; 21:345-350. [PMID: 36484719 DOI: 10.1039/d2ob01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A Cu(II)/BOX complex catalyses the enantioselective addition of difluorinated silyl enol ethers to acylpyridine N-oxides. The reaction provides difluorinated chiral tertiary alcohols of great interest in medicinal chemistry. These compounds are obtained in moderate to excellent yields and with high enantioselectivities. The stereochemical outcome of the reaction has been explained by DFT calculations.
Collapse
Affiliation(s)
- Amparo Sanz-Marco
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - Daniel Esperilla
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - Marc Montesinos-Magraner
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - Carlos Vila
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - M Carmen Muñoz
- Departament de Física Aplicada, Universitat Politècnica de València, C/Cami de Vera s/n, 46022-València, Spain
| | - José R Pedro
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - Gonzalo Blay
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| |
Collapse
|
2
|
Liu YL, Wang XP, Wei J, Li Y. Synthesis of oxindoles bearing a stereogenic 3-fluorinated carbon center from 3-fluorooxindoles. Org Biomol Chem 2021; 20:538-552. [PMID: 34935824 DOI: 10.1039/d1ob01964c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
3,3-Disubstituted oxindoles bearing a stereogenic 3-fluorinated carbon center are privileged structural motifs present in many bioactive molecules. The straightforward functionalization of 3-fluorooxindoles constitutes a powerful method for the synthesis of 3-fully substituted 3-fluorooxindoles, taking advantage of the ease of preparation of 3-fluorooxindoles with different substitution patterns and the atom efficiency of chemical reactions. In the past decade, many papers have appeared on the synthesis of 3-fully substituted 3-fluorooxindoles from 3-fluorooxindoles. Importantly, many asymmetric catalytic methods have been developed for the enantioselective synthesis of these valuable compounds. This review summarizes the achievements in this area, and overviews synthetic opportunities that still exist.
Collapse
Affiliation(s)
- Yong-Liang Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China.
| | - Xiao-Ping Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China.
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China.
| | - Ya Li
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China. .,Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
3
|
Gong Y, Yu J, Hao Y, Zhou Y, Zhou J. Catalytic Enantioselective Aldol‐Type Reaction Using α‐Fluorinated Enolates. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yi Gong
- College of pharmacyGuiyang University of Chinese Medicine Guiyang 550025 China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesEast China Normal University 3663 N Zhongshan Road Shanghai 200062 China
| | - Yong‐Jia Hao
- College of pharmacyGuiyang University of Chinese Medicine Guiyang 550025 China
| | - Ying Zhou
- College of pharmacyGuiyang University of Chinese Medicine Guiyang 550025 China
| | - Jian Zhou
- College of pharmacyGuiyang University of Chinese Medicine Guiyang 550025 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesEast China Normal University 3663 N Zhongshan Road Shanghai 200062 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, CAS Shanghai 200032 China
| |
Collapse
|
4
|
Liu K, Sui LC, Jin Q, Li DY, Liu PN. CuBr-mediated radical cascade difluoroacetamidation of acrylamides using α,α-difluoro-α-(TMS)-acetamides. Org Chem Front 2017. [DOI: 10.1039/c7qo00209b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Radical cascade difluoroacetamidation of N-(arylsulfonyl)acrylamides with α,α-difluoro-α-(TMS)-acetamides has been achieved for the first time.
Collapse
Affiliation(s)
- Kai Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Lin-Chao Sui
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Qiao Jin
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
5
|
Bokic T, Storr M, Schicho R. Potential Causes and Present Pharmacotherapy of Irritable Bowel Syndrome: An Overview. Pharmacology 2015; 96:76-85. [PMID: 26139425 DOI: 10.1159/000435816] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is currently one of the most common disorders of the digestive system in the Western society. Almost 2 out of 10 people suffer from IBS with women being more affected than men. IBS is associated with abdominal pain, bloating and altered stool consistency and imposes a heavy burden for the affected patients. SUMMARY The pathophysiology of IBS remains elusive although potential causes have been suggested, such as a deranged brain-gut signaling, hypersensitivity of visceral sensory afferent fibers, bacterial gastroenteritis, small intestinal bacterial overgrowth (SIBO), genetic alterations and food sensitivity. Targets for the pharmacotherapy of IBS include the serotonergic and opioidergic system, and the microbial population of the gut. Alternative therapies like traditional Chinese medicine have shown some success in the combat against IBS. Key Messages: Many therapeutics for the treatment of IBS have emerged in the past; however, only a few have met up with the expectations in larger clinical trials. Additionally, the multifactorial etiology of IBS and its variety of cardinal symptoms requires an individual set of therapeutics. This review provides a short overview of potential causes and current pharmacological therapeutics and of additional and alternative therapies for IBS.
Collapse
Affiliation(s)
- Theodor Bokic
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
6
|
Jiao HY, Kim DH, Ki JS, Ryu KH, Choi S, Jun JY. Effects of lubiprostone on pacemaker activity of interstitial cells of cajal from the mouse colon. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:341-6. [PMID: 25177167 PMCID: PMC4146637 DOI: 10.4196/kjpp.2014.18.4.341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022]
Abstract
Lubiprostone is a chloride (Cl-) channel activator derived from prostaglandin E1 and used for managing constipation. In addition, lubiprostone affects the activity of gastrointestinal smooth muscles. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow-wave activity in smooth muscles. We studied the effects of lubiprostone on the pacemaker potentials of colonic ICCs. We used the whole-cell patch-clamp technique to determine the pacemaker activity in cultured colonic ICCs obtained from mice. Lubiprostone hyperpolarized the membrane and inhibited the generation of pacemaker potentials. Prostanoid EP1, EP2, EP3, and EP4 antagonists (SC-19220, PF-04418948, 6-methoxypyridine-2-boronc acid N-phenyldiethanolamine ester, and GW627368, respectively) did not block the response to lubiprostone. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) did not block the response to lubiprostone. In addition, tetraethylammonium (TEA, a voltage-dependent potassium [K+] channel blocker) and apamin (a calcium [Ca2+]-dependent K+ channel blocker) did not block the response to lubiprostone. However, glibenclamide (an ATP-sensitive K+ channel blocker) blocked the response to lubiprostone. Similar to lubiprostone, pinacidil (an opener of ATP-sensitive K+ channel) hyperpolarized the membrane and inhibited the generation of pacemaker potentials, and these effects were inhibited by glibenclamide. These results suggest that lubiprostone can modulate the pacemaker potentials of colonic ICCs via activation of ATP-sensitive K+ channel through a prostanoid EP receptor-independent mechanism.
Collapse
Affiliation(s)
- Han-Yi Jiao
- Department of Physiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Dong Hyun Kim
- Department of Radiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Jung Suk Ki
- Department of Physiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Kwon Ho Ryu
- Department of Physiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Jae Yeoul Jun
- Department of Physiology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| |
Collapse
|
7
|
Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem Rev 2013; 114:2432-506. [DOI: 10.1021/cr4002879] [Citation(s) in RCA: 3202] [Impact Index Per Article: 291.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiang Wang
- Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - María Sánchez-Roselló
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
- Laboratorio
de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - José Luis Aceña
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
| | - Carlos del Pozo
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
| | - Alexander E. Sorochinsky
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
- Institute
of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyiv-94, Ukraine
| | - Santos Fustero
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
- Laboratorio
de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
| | - Hong Liu
- Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
8
|
Fichna J, Sibaev A, Sałaga M, Sobczak M, Storr M. The cannabinoid-1 receptor inverse agonist taranabant reduces abdominal pain and increases intestinal transit in mice. Neurogastroenterol Motil 2013; 25:e550-9. [PMID: 23692073 DOI: 10.1111/nmo.12158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/26/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Constipation-predominant irritable bowel syndrome (IBS-C) is a common functional gastrointestinal (GI) disorder with abdominal pain and decreased motility. Current treatments of IBS-C are insufficient. The aim of this study was to evaluate the potential application of taranabant, a cannabinoid type 1 (CB1) inverse agonist using mouse models mimicking the symptoms of IBS-C. METHODS Changes in intestinal contractile activity were studied in vitro, using isolated mouse ileum and colon and intracellular recordings. In vivo, whole gastrointestinal transit (WGT) and fecal pellet output (FPO) were measured under standard conditions and with pharmacologically delayed GI transit. The antinociceptive effect was evaluated in mustard oil- and acetic acid-induced models of visceral pain. Forced swimming and tail suspension tests were performed and locomotor activity was measured to evaluate potential central side effects. KEY RESULTS In vitro, taranabant (10(-10) -10(-7) mol L(-1)) increased contractile responses in mouse ileum and blocked the effect of the CB agonist WIN 55,212-2. Taranabant had no effect on the amplitude of electrical field stimulation (EFS)-evoked junction potentials. In vivo, taranabant (0.1-3 mg kg(-1), i.p. and 3 mg kg(-1), p.o.) increased WGT and FPO in mice and reversed experimental constipation. The effect of taranabant was absent in CB1(-/-) mice. Taranabant significantly decreased the number of pain-related behaviors in animal models. At the doses tested, taranabant did not display mood-related adverse side effects typical for CB1 receptor inverse agonists. CONCLUSIONS & INFERENCES Taranabant improved symptoms related to slow GI motility and abdominal pain and may become an attractive template in the development of novel therapeutics targeting IBS-C.
Collapse
Affiliation(s)
- J Fichna
- Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
9
|
Beattie DT, Higgins DL, Ero MP, Amagasu SM, Vickery RG, Kersey K, Hopkins A, Smith JAM. An in vitro investigation of the cardiovascular effects of the 5-HT(4) receptor selective agonists, velusetrag and TD-8954. Vascul Pharmacol 2012. [PMID: 23201772 DOI: 10.1016/j.vph.2012.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 5-HT(4) receptor agonists, and gastrointestinal (GI) prokinetic agents, cisapride and tegaserod, lack selectivity for the 5-HT(4) receptor. Cisapride is a potent human ether-à-go-go-related gene (hERG) potassium channel inhibitor while cisapride and tegaserod have significant affinity for 5-HT(1) and 5-HT(2) receptor subtypes. Marketing of both compounds was discontinued due to cardiovascular concerns (cardiac arrhythmias with cisapride and ischemic events with tegaserod). The reported association of tegaserod with ischemia has been postulated to involve coronary artery constriction or augmentation of platelet aggregation. This in vitro study investigated the effects of two of the new generation of highly selective 5-HT(4) receptor agonists, velusetrag and TD-8954, on canine, porcine and human coronary artery tone, human platelet aggregation and hERG potassium channel conductance. No significant off-target actions of velusetrag or TD-8954 were identified in these, and prior, studies. While cisapride inhibited potently the hERG channel currents, tegaserod failed to affect platelet aggregation, and had only a small contractile effect on the canine coronary artery at high concentrations. Tegaserod inhibited the 5-HT-induced contractile response in the porcine coronary artery. New generation 5-HT(4) receptor agonists hold promise for the treatment of patients suffering from GI motility disorders with a reduced cardiovascular risk.
Collapse
Affiliation(s)
- D T Beattie
- Theravance, Inc., South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Benefits from long-term treatment in irritable bowel syndrome. Gastroenterol Res Pract 2012; 2012:936960. [PMID: 22272195 PMCID: PMC3261481 DOI: 10.1155/2012/936960] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/21/2011] [Indexed: 12/14/2022] Open
Abstract
It is known that irritable bowel syndrome (IBS) is a chronic disease of cyclic nature characterized by recurrent symptoms. IBS patients should receive, as initial therapeutic approach a short course of treatment which, if effective, has the additional value of confirming the diagnosis. Long-term treatment should be reserved to diagnosed IBS patients with recurrent symptoms. Clinical trials with stabilized therapies and new active treatments showed an improvement of the symptoms over placebo that is often time-dependent but with high relapse rates (around 40%–50% when stopping treatment). Relapse is not always immediate after stopping treatment and the recent data from OBIS trial with otilonium bromide or with psychotherapy, showed that due to different chemico-physical characteristics of the drugs or the psychosomatic impact to the disease not all treatment gave the same relapsing rate if compared to placebo. Results of IBS clinical trials with different therapies tailored to the patient needs indicate that a cyclic treatment therapy is advisable to counteract the nature of the disease.
Collapse
|
11
|
Whitehead WE, Palsson OS, Gangarosa L, Turner M, Tucker J. Lubiprostone does not influence visceral pain thresholds in patients with irritable bowel syndrome. Neurogastroenterol Motil 2011; 23:944-e400. [PMID: 21914041 PMCID: PMC3184461 DOI: 10.1111/j.1365-2982.2011.01776.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND In clinical trials, lubiprostone reduced the severity of abdominal pain. The primary aim was to determine whether lubiprostone raises the threshold for abdominal pain induced by intraluminal balloon distention. A secondary aim was to determine whether changes in pain sensitivity influence clinical pain independently of changes in transit time. METHODS Sixty-two patients with irritable bowel syndrome with constipation (IBS-C) participated in an 8-week cross-over study. All subjects completed a 14-day baseline ending with a barostat test of pain and urge sensory thresholds. Half, randomly selected, then received 48 μg day(-1) of lubiprostone for 14 days ending with a pain sensitivity test and a Sitzmark test of transit time. This was followed by a 14-day washout and then a crossover to 14 days of placebo with tests of pain sensitivity and transit time. The other half of the subjects received placebo before lubiprostone. All kept symptom diaries. KEY RESULTS Stools were significantly softer when taking lubiprostone compared to placebo (Bristol Stool scores 4.20 vs 3.44, P < 0.001). However, thresholds for pain (17.36 vs 17.83 mmHg, lubiprostone vs placebo) and urgency to defecate (14.14 vs 14.53 mmHg) were not affected by lubiprostone. Transit time was not significantly different between lubiprostone and placebo (51.27 vs 51.81 h), and neither pain sensitivity nor transit time was a significant predictor of clinical pain. CONCLUSIONS & INFERENCES Lubiprostone has no effect on visceral sensory thresholds. The reductions in clinical pain that occur while taking lubiprostone appear to be secondary to changes in stool consistency.
Collapse
Affiliation(s)
- W E Whitehead
- Center for Functional Gastrointestinal and Motility Disorders and Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
12
|
Wallace JL, Ferraz JGP. New pharmacologic therapies in gastrointestinal disease. Gastroenterol Clin North Am 2010; 39:709-20. [PMID: 20951926 DOI: 10.1016/j.gtc.2010.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many gastrointestinal diseases remain poorly responsive to therapies, and even in the cases of conditions for which there are many effective drugs, there is still considerable room for improvement. This article is focused on drugs for digestive disorders that have entered the marketplace recently, or are expected to reach the marketplace within the next 1 to 2 years. Although advances have been made in understanding gastrointestinal motility, visceral pain, mucosal inflammation, and tissue repair, the major gastrointestinal diseases remain as significant therapeutic challenges.
Collapse
Affiliation(s)
- John L Wallace
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
13
|
Chang JY, Talley NJ. Current and emerging therapies in irritable bowel syndrome: from pathophysiology to treatment. Trends Pharmacol Sci 2010; 31:326-34. [PMID: 20554042 DOI: 10.1016/j.tips.2010.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 12/14/2022]
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder with characteristic symptoms of abdominal pain/discomfort with a concurrent disturbance in defecation. It accounts for a significant healthcare burden, and symptoms may be debilitating for some patients. Traditional symptom-based therapies have been found to be ineffective in the treatment of the entire syndrome complex, and do not modify the natural history of the disorder. Although the exact etiopathogenesis of IBS is incompletely understood, recent advances in the elucidation of the pathophysiology and molecular mechanisms of IBS have resulted in the development of novel therapies, as well as potential future therapeutic targets. This article reviews current and emerging therapies in IBS based upon: IBS as a serotonergic disorder; stimulating intestinal chloride channels; modulation of visceral hypersensitivity; altering low-grade intestinal inflammation; and modulation of the gut microbiota.
Collapse
Affiliation(s)
- Joseph Y Chang
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street SW Rochester, MN 55905, USA
| | | |
Collapse
|