1
|
Vélez-Segarra V, González-Crespo S, Santiago-Cartagena E, Vázquez-Quiñones LE, Martínez-Matías N, Otero Y, Zayas JJ, Siaca R, Del Rosario J, Mejías I, Aponte JJ, Collazo NC, Lasso FJ, Snider J, Jessulat M, Aoki H, Rymond BC, Babu M, Stagljar I, Rodríguez-Medina JR. Protein Interactions of the Mechanosensory Proteins Wsc2 and Wsc3 for Stress Resistance in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2020; 10:3121-3135. [PMID: 32641451 PMCID: PMC7466973 DOI: 10.1534/g3.120.401468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 12/23/2022]
Abstract
Antifungal drug discovery and design is very challenging because of the considerable similarities in genetic features and metabolic pathways between fungi and humans. However, cell wall composition represents a notable point of divergence. Therefore, a research strategy was designed to improve our understanding of the mechanisms for maintaining fungal cell wall integrity, and to identify potential targets for new drugs that modulate the underlying protein-protein interactions in Saccharomyces cerevisiae This study defines roles for Wsc2p and Wsc3p and their interacting protein partners in the cell wall integrity signaling and cell survival mechanisms that respond to treatments with fluconazole and hydrogen peroxide. By combined genetic and biochemical approaches, we report the discovery of 12 novel protein interactors of Wsc2p and Wsc3p Of these, Wsc2p interacting partners Gtt1p and Yck2p, have opposing roles in the resistance and sensitivity to fluconazole treatments respectively. The interaction of Wsc2p with Ras2p was confirmed by iMYTH and IP-MS approaches and is shown to play a dominant role in response to oxidative stress induced by hydrogen peroxide. Consistent with an earlier study, Ras2p was also identified as an interacting partner of Wsc1p and Mid2p cell wall integrity signaling proteins. Collectively, this study expands the interaction networks of the mechanosensory proteins of the Cell Wall Integrity pathway.
Collapse
Affiliation(s)
- Vladimir Vélez-Segarra
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Sahily González-Crespo
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Ednalise Santiago-Cartagena
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Luis E Vázquez-Quiñones
- School of Science and Technology, University Ana G. Mendez, Cupey Campus, Ana G Mendez Ave, No.1399, San Juan, PR 00926
| | - Nelson Martínez-Matías
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Yamirelis Otero
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Julián J Zayas
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Rafael Siaca
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Jeanmadi Del Rosario
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Inoushka Mejías
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - José J Aponte
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Noelani C Collazo
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Francisco J Lasso
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Jamie Snider
- Donnelly Centre, Department of Biochemistry, and Department of Molecular Genetics, University of Toronto, Ontario M5S 3E1, Canada
| | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Brian C Rymond
- Department of Biology, University of Kentucky, Lexington, KY 40506
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry, and Department of Molecular Genetics, University of Toronto, Ontario M5S 3E1, Canada
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - José R Rodríguez-Medina
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| |
Collapse
|
2
|
Stasi M, De Luca M, Bucci C. Two-hybrid-based systems: powerful tools for investigation of membrane traffic machineries. J Biotechnol 2014; 202:105-17. [PMID: 25529347 DOI: 10.1016/j.jbiotec.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/18/2023]
Abstract
Protein-protein interactions regulate biological processes and are fundamental for cell functions. Recently, efforts have been made to define interactomes, which are maps of protein-protein interactions that are useful for understanding biological pathways and networks and for investigating how perturbations of these networks lead to diseases. Therefore, interactomes are becoming fundamental for establishing the molecular basis of human diseases and contributing to the discovery of effective therapies. Interactomes are constructed based on experimental data present in the literature and computational predictions of interactions. Several biochemical, genetic and biotechnological techniques have been used in the past to identify protein-protein interactions. The yeast two-hybrid system has beyond doubt represented a revolution in the field, being a versatile tool and allowing the immediate identification of the interacting proteins and isolation of the cDNA coding for the interacting peptide after in vivo screening. Recently, variants of the yeast two-hybrid assay have been developed, including high-throughput systems that promote the rapidly growing field of proteomics. In this review we will focus on the role of this technique in the discovery of Rab interacting proteins, highlighting the importance of high-throughput two-hybrid screening as a tool to study the complexity of membrane traffic machineries.
Collapse
Affiliation(s)
- Mariangela Stasi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Maria De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
3
|
Sasvari Z, Gonzalez PA, Rachubinski RA, Nagy PD. Tombusvirus replication depends on Sec39p endoplasmic reticulum-associated transport protein. Virology 2013; 447:21-31. [PMID: 24210096 DOI: 10.1016/j.virol.2013.07.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/03/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
Positive-stranded RNA viruses subvert subcellular membranes to built viral replicases complexes (VRCs) in infected cells. Tombusviruses use peroxisomal membranes for the assembly of their VRCs and they can efficiently switch to the endoplasmic reticulum membrane in the absence of peroxisomes. In this paper, we show that the ER-resident Sec39p vesicular transport protein is critical for the formation of active VRCs in yeast model host. Repression of Sec39p expression in yeast or in plants resulted in greatly reduced tombusvirus accumulation. Moreover, the purified tombusvirus replicase from Sec39p-depleted yeast cells showed low in vitro activity. Also, tombusvirus RNA replication was poor in cell-free extracts or in isolated ER membranes from yeast with repressed Sec39p expression. The tombusvirus p33 replication protein was mislocalized to the ER when Sec39p was depleted in yeast. Overall, Sec39p is the first peroxisomal biogenesis protein characterized that is critical for tombusvirus replication in yeast and plants.
Collapse
Affiliation(s)
- Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, 201F Plant Science Building, KY 40546, USA
| | | | | | | |
Collapse
|
4
|
Memišević V, Zavaljevski N, Pieper R, Rajagopala SV, Kwon K, Townsend K, Yu C, Yu X, DeShazer D, Reifman J, Wallqvist A. Novel Burkholderia mallei virulence factors linked to specific host-pathogen protein interactions. Mol Cell Proteomics 2013; 12:3036-51. [PMID: 23800426 PMCID: PMC3820922 DOI: 10.1074/mcp.m113.029041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/10/2013] [Indexed: 11/09/2022] Open
Abstract
Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement processes.
Collapse
Affiliation(s)
- Vesna Memišević
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Nela Zavaljevski
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | | | | | - Keehwan Kwon
- §J. Craig Venter Institute, Rockville, Maryland 20850
| | | | - Chenggang Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Xueping Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - David DeShazer
- ¶Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702
| | - Jaques Reifman
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Anders Wallqvist
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| |
Collapse
|
5
|
Activated Ras as a Therapeutic Target: Constraints on Directly Targeting Ras Isoforms and Wild-Type versus Mutated Proteins. ISRN ONCOLOGY 2013; 2013:536529. [PMID: 24294527 PMCID: PMC3833460 DOI: 10.1155/2013/536529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022]
Abstract
The ability to selectively and directly target activated Ras would provide immense utility for treatment of the numerous cancers that are driven by oncogenic Ras mutations. Patients with disorders driven by overactivated wild-type Ras proteins, such as type 1 neurofibromatosis, might also benefit from progress made in that context. Activated Ras is an extremely challenging direct drug target due to the inherent difficulties in disrupting the protein:protein interactions that underlie its activation and function. Major investments have been made to target Ras through indirect routes. Inhibition of farnesyl transferase to block Ras maturation has failed in large clinical trials. Likely reasons for this disappointing outcome include the significant and underappreciated differences in the isoforms of Ras. It is still plausible that inhibition of farnesyl transferase will prove effective for disease that is driven by activated H-Ras. The principal current focus of drugs entering clinic trial is inhibition of pathways downstream of activated Ras, for example, trametinib, a first-in-class MEK inhibitor. The complexity of signaling that is driven by activated Ras indicates that effective inhibition of oncogenic transduction through this approach will be difficult, with resistance being likely to emerge through switch to parallel pathways. Durable disease responses will probably require combinatorial block of several downstream targets.
Collapse
|
6
|
Mattiazzi M, Petrovič U, Križaj I. Yeast as a model eukaryote in toxinology: a functional genomics approach to studying the molecular basis of action of pharmacologically active molecules. Toxicon 2012; 60:558-71. [PMID: 22465496 DOI: 10.1016/j.toxicon.2012.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
Yeast Saccharomyces cerevisiae has proven to be a relevant and convenient model organism for the study of diverse biological phenomena, due to its straightforward genetics, cost-effectiveness and rapid growth, combined with the typical characteristics of a eukaryotic cell. More than 40% of yeast proteins share at least part of their primary amino acid sequence with the corresponding human protein, making yeast a valuable model in biomedical research. In the last decade, high-throughput and genome-wide experimental approaches developed in yeast have paved the way to functional genomics that aims at a global understanding of the relationship between genotype and phenotype. In this review we first present the yeast strain and plasmid collections for genome-wide experimental approaches to study complex interactions between genes, proteins and endo- or exogenous small molecules. We describe methods for protein-protein, protein-DNA, genetic and chemo-genetic interactions, as well as localization studies, focussing on their application in research on small pharmacologically active molecules. Next we review the use of yeast as a model organism in neurobiology, emphasizing work done towards elucidating the pathogenesis of neurodegenerative diseases and the mechanism of action of neurotoxic phospholipases A(2).
Collapse
Affiliation(s)
- Mojca Mattiazzi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | | |
Collapse
|
7
|
Takahashi T, Gao XD. Physical Interactions among Human Glycosyltransferases Involved in Dolichol-Linked Oligosaccharide Biosynthesis. TRENDS GLYCOSCI GLYC 2012. [DOI: 10.4052/tigg.24.65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Petschnigg J, Wong V, Snider J, Stagljar I. Investigation of membrane protein interactions using the split-ubiquitin membrane yeast two-hybrid system. Methods Mol Biol 2012; 812:225-44. [PMID: 22218863 DOI: 10.1007/978-1-61779-455-1_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Proteins are generally organized into molecular complexes, in which multiple interaction partners collaborate to carry out cellular processes. Thus, techniques to map protein-protein interactions have become pivotal for biological studies of as yet uncharacterized proteins. Investigation of interaction partners of membrane proteins is of special interest, as they play a major role in cellular processes and are often directly linked to human diseases. Owing to their hydrophobic nature, however, it has proven difficult to study their interaction partners. To circumvent this problem, a yeast-based genetic technology for the in vivo detection of membrane protein interactions, the split-ubiquitin membrane yeast two-hybrid (MYTH) system, has been developed. MYTH allows for detection of both stable and transient interactions and can be applied to large- and small-scale screens. It uses the split-ubiquitin approach, in which the reconstitution of two ubiquitin halves is mediated by a specific protein-protein interaction. Briefly, the bait membrane protein is fused to the C-terminal half of ubiquitin and an artificial transcription factor. The mutated N-terminal moiety of ubiquitin is fused to the prey protein. Upon interaction of bait and prey proteins, ubiquitin is reconstituted and further recognized by ubiquitin-specific proteases, which subsequently cleave off the transcription factor, thus resulting in reporter gene activation. To date, MYTH has been successfully applied to study interactions of membrane proteins from various organisms and has only recently been adapted for the identification of interaction partners of mammalian receptor tyrosine kinases.
Collapse
Affiliation(s)
- Julia Petschnigg
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
9
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Plant viruses exploit cellular factors, including host proteins, membranes and metabolites, for their replication in infected cells and to establish systemic infections. Besides traditional genetic, molecular, cellular and biochemical methods studying plant-virus interactions, both global and specialized proteomics methods are emerging as useful approaches for the identification of all the host proteins that play roles in virus infections. The various proteomics approaches include measuring differential protein expression in virus infected versus noninfected cells, analysis of viral and host protein components in the viral replicase or other virus-induced complexes, as well as proteome-wide screens to identify host protein - viral protein interactions using protein arrays or yeast two-hybrid assays. In this review, we will discuss the progress made in plant virology using various proteomics methods, and highlight the functions of some of the identified host proteins during viral infections. Since global proteomics approaches do not usually identify the molecular mechanism of the identified host factors during viral infections, additional experiments using genetics, biochemistry, cell biology and other approaches should also be performed to characterize the functions of host factors. Overall, the ever-improving proteomics approaches promise further understanding of plant-virus interactions that will likely result in new strategies for viral disease control in plants.
Collapse
Affiliation(s)
- Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, KY
| | | |
Collapse
|
11
|
Mendu V, Chiu M, Barajas D, Li Z, Nagy PD. Cpr1 cyclophilin and Ess1 parvulin prolyl isomerases interact with the tombusvirus replication protein and inhibit viral replication in yeast model host. Virology 2010; 406:342-51. [PMID: 20709345 DOI: 10.1016/j.virol.2010.07.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/20/2010] [Accepted: 07/15/2010] [Indexed: 01/27/2023]
Abstract
To identify host proteins interacting with the membrane-bound replication proteins of tombusviruses, we performed membrane yeast two-hybrid (MYTH) screens based on yeast cDNA libraries. The screens led to the identification of 57 yeast proteins interacting with replication proteins of two tombusviruses. Results from a split ubiquitin assay with 12 full-length yeast proteins and the viral replication proteins suggested that the replication proteins of two tombusviruses interact with a similar set of host proteins. Follow-up experiments with the yeast Cpr1p cyclophilin, which has prolyl isomerase activity that catalyzes cis-trans isomerization of peptidyl-prolyl bonds, confirmed that Cpr1p interacted with the viral p33 replication protein in yeast and in vitro. Replication of Tomato bushy stunt virus replicon RNA increased in cpr1Δ yeast, while over-expression of Cpr1p decreased viral replication. We also show that the Ess1p parvulin prolyl isomerase partly complements Cpr1p function as an inhibitor of tombusvirus replication.
Collapse
Affiliation(s)
- Venugopal Mendu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
12
|
Li Z, Pogany J, Panavas T, Xu K, Esposito AM, Kinzy TG, Nagy PD. Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology 2009; 385:245-60. [PMID: 19131084 DOI: 10.1016/j.virol.2008.11.041] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/01/2008] [Accepted: 11/25/2008] [Indexed: 11/30/2022]
Abstract
Host RNA-binding proteins are likely to play multiple, integral roles during replication of plus-strand RNA viruses. To identify host proteins that bind to viral RNAs, we took a global approach based on the yeast proteome microarray, which contains 4080 purified yeast proteins. The biotin-labeled RNA probes included two distantly related RNA viruses, namely Tomato bushy stunt virus (TBSV) and Brome mosaic virus (BMV). Altogether, we have identified 57 yeast proteins that bound to TBSV RNA and/or BMV RNA. Among the identified host proteins, eleven bound to TBSV RNA and seven bound to BMV RNA with high selectivity, whereas the remaining 39 host proteins bound to both viral RNAs. The interaction between the TBSV replicon RNA and five of the identified host proteins was confirmed via gel-mobility shift and co-purification experiments from yeast. Over-expression of the host proteins in yeast, a model host for TBSV, revealed 4 host proteins that enhanced TBSV replication as well as 14 proteins that inhibited replication. Detailed analysis of one of the identified yeast proteins binding to TBSV RNA, namely translation elongation factor eEF1A, revealed that it is present in the highly purified tombusvirus replicase complex. We also demonstrate binding of eEF1A to the p33 replication protein and a known cis-acting element at the 3' end of TBSV RNA. Using a functional mutant of eEF1A, we provide evidence on the involvement of eEF1A in TBSV replication.
Collapse
Affiliation(s)
- Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, 40546, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Analysis of membrane protein complexes using the split-ubiquitin membrane yeast two-hybrid (MYTH) system. Methods Mol Biol 2009; 548:247-71. [PMID: 19521829 DOI: 10.1007/978-1-59745-540-4_14] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Recent research has begun to elucidate the global network of cytosolic and membrane protein interactions. The resulting interactome map facilitates numerous biological studies, including those for cell signalling, protein trafficking and protein regulation. Due to the hydrophobic nature of membrane proteins such as tyrosine kinases, G-protein coupled receptors, membrane bound phosphatases and transporters it is notoriously difficult to study their relationship to signaling molecules, the cytoskeleton, or any other interacting partners. Although conventional yeast-two hybrid is a simple and robust technique that is effective in the identification of specific protein-protein interactions, it is limited in its use for membrane proteins. However, the split-ubiquitin membrane based yeast two-hybrid assay (MYTH) has been described as a tool that allows for the identification of membrane protein interactions. In the MYTH system, ubiquitin has been split into two halves, each of which is fused to a protein, at least one of which is membrane bound. Upon interaction of these two proteins, the two halves of ubiquitin are reconstituted and a transcription factor that is fused to the membrane protein is released. The transcription factor then enters the nucleus and activates transcription of reporter genes. Currently, large-scale MYTH screens using cDNA or gDNA libraries are performed to identify and map the binding partners of various membrane proteins. Thus, the MYTH system is proving to be a powerful tool for the elucidation of specific protein-protein interactions, contributing greatly to the mapping of the membrane protein interactome.
Collapse
|
14
|
Cdc34p ubiquitin-conjugating enzyme is a component of the tombusvirus replicase complex and ubiquitinates p33 replication protein. J Virol 2008; 82:6911-26. [PMID: 18463149 DOI: 10.1128/jvi.00702-08] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To identify host proteins interacting with Tomato bushy stunt virus (TBSV) replication proteins in a genome-wide scale, we have used a yeast (Saccharomyces cerevisiae) proteome microarray carrying 4,088 purified proteins. This approach led to the identification of 58 yeast proteins that interacted with p33 replication protein. The identified host proteins included protein chaperones, ubiquitin-associated proteins, translation factors, RNA-modifying enzymes, and other proteins with yet-unknown functions. We confirmed that 19 of the identified host proteins bound to p33 in vitro or in a split-ubiquitin-based two-hybrid assay. Further analysis of Cdc34p E2 ubiquitin-conjugating enzyme, which is one of the host proteins interacting with p33, revealed that Cdc34p is a novel component of the purified viral replicase. Downregulation of Cdc34p expression in yeast, which supports replication of a TBSV replicon RNA (repRNA), reduced repRNA accumulation and the activity of the tombusvirus replicase by up to fivefold. Overexpression of wild-type Cdc34p, but not that of an E2-defective mutant of Cdc34p, increased repRNA accumulation, suggesting a significant role for the ubiquitin-conjugating enzyme function of Cdc34p in TBSV replication. Also, Cdc34p was able to ubiquitinate p33 in vitro. In addition, we have shown that p33 becomes ubiquitinated in vivo. We propose that ubiquitination of p33 likely alters its function or affects the recruitment of host factors during TBSV replication.
Collapse
|
15
|
Iyer K, Bürkle L, Auerbach D, Thaminy S, Dinkel M, Engels K, Stagljar I. Utilizing the split-ubiquitin membrane yeast two-hybrid system to identify protein-protein interactions of integral membrane proteins. Sci Signal 2005; 2005:pl3. [PMID: 15770033 DOI: 10.1126/stke.2752005pl3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Various modifications of the conventional yeast two-hybrid system have played an essential role in confirming or detecting protein-protein interactions among nuclear and cytoplasmic proteins. These approaches have permitted the identification of novel interaction partners, as well as provided hints as to their function. However, membrane proteins, such as receptor tyrosine kinases, G protein-coupled receptors, membrane-bound phosphatases, and transporters, which represent important classes of signaling molecules, are difficult to study using classical protein interaction assays because of their hydrophobic nature. Here, we describe a genetic system that allows the identification of integral membrane-interacting proteins. This so-called "split-ubiquitin membrane-based yeast two-hybrid assay" involves fusing the halves of ubiquitin to two interacting proteins, at least one of which is membrane bound. Upon interaction of these two proteins, the halves of ubiquitin are brought together, and the transcription factor that is fused to a membrane protein of interest is cleaved and released. The free transcription factor then enters the nucleus and activates transcription of reporter genes. We also describe how this technology is used to screen complementary DNA libraries to identify novel binding partners of a membrane protein of interest.
Collapse
Affiliation(s)
- Kavitha Iyer
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|