1
|
Oprea M, Ionita M. Antisense oligonucleotides-based approaches for the treatment of multiple myeloma. Int J Biol Macromol 2024; 291:139186. [PMID: 39732226 DOI: 10.1016/j.ijbiomac.2024.139186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g. proteasome inhibitors, immunomodulatory drugs, tumor cell-targeting monoclonal antibodies, autologous stem cell transplantation, etc.), multiple myeloma is still regarded as incurable, and the prognosis for most patients is poor, as the disease becomes refractory to treatment throughout time. Antisense oligonucleotides (ASOs), designed to be complementary to selected messenger RNA (mRNA) sequences of specific genes involved in the pathogenesis of multiple myeloma (e.g. Bcl-2, Mcl-1, STAT3, IRF4, IL6, ILF2, HK2, c-MYC, etc.), represent a promising alternative to conventional treatments, and can be tailored according to the individual requirements of each patient. The main goal of antisense therapy for multiple myeloma consists in silencing the specific genes participating in the proliferation and survival of tumor cells via RNA cleavage or RNA blockage, thus preventing mRNA interactions with ribosomes and altering the process of protein translation. So far, pre-clinical and clinical studies showed promising results when Bcl-2 (Genasense), Mcl-1 (ISIS2048), STAT3 (ISIS345794) and IRF4 (ION251) were targeted using ASOs-based formulations. However, FDA approval has not been obtained yet for these products, mainly due to ethical and financial issues posed by customized therapies and insufficient information regarding their long-term toxicity. This review aims to provide a comprehensive insight into antisense oligonucleotides-based therapies, their potential chemical modifications, the mechanisms involved in ASOs-mediated gene silencing, potential systems for ASOs delivery, and the applications of ASOs in the treatment of multiple myeloma. The relevant genetic targets in ASOs-based MM therapies were described, and the research results obtained in the studies conducted so far were analyzed, with a focus on the ASOs formulations that were already included in clinical trials. In the end, current challenges, and future perspectives of antisense therapy for MM were also discussed.
Collapse
Affiliation(s)
- Madalina Oprea
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Mariana Ionita
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania.
| |
Collapse
|
2
|
Ersöz E, Demir-Dora D. Unveiling the potential of antisense oligonucleotides: Mechanisms, therapies, and safety insights. Drug Dev Res 2024; 85:e22187. [PMID: 38764172 DOI: 10.1002/ddr.22187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 05/21/2024]
Abstract
Antisense oligonucleotides (ASOs) are short, synthetic, single-stranded deoxynucleotide sequences composed of phosphate backbone-connected sugar rings. Designing of those strands is based on Watson-Crick hydrogen bonding mechanism. Thanks to rapidly advancing medicine and technology, evolving of the gene therapy area and ASO approaches gain attention. Considering the genetic basis of diseases, it is promising that gene therapy approaches offer more specific and effective options compared to conventional treatments. The objective of this review is to explain the mechanism of ASOs and discuss the characteristics and safety profiles of therapeutic agents in this field. Pharmacovigilance for gene therapy products is complex, requiring accurate assessment of benefit-risk balance and evaluation of adverse effects.
Collapse
Affiliation(s)
- Edanur Ersöz
- Health Sciences Institute, Department of Gene and Cell Therapy, Akdeniz University, Antalya, Turkey
| | - Devrim Demir-Dora
- Health Sciences Institute, Department of Gene and Cell Therapy, Akdeniz University, Antalya, Turkey
- Faculty of Medicine, Department of Medical Pharmacology, Akdeniz University, Antalya, Turkey
- Health Sciences Institute, Department of Medical Biotechnology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Gupta R, Salave S, Rana D, Karunakaran B, Butreddy A, Benival D, Kommineni N. Versatility of Liposomes for Antisense Oligonucleotide Delivery: A Special Focus on Various Therapeutic Areas. Pharmaceutics 2023; 15:1435. [PMID: 37242677 PMCID: PMC10222274 DOI: 10.3390/pharmaceutics15051435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapeutics, specifically antisense oligonucleotides (ASOs), can effectively modulate gene expression and protein function, leading to long-lasting curative effects. The hydrophilic nature and large size of oligonucleotides present translational challenges, which have led to the exploration of various chemical modifications and delivery systems. The present review provides insights into the potential role of liposomes as a drug delivery system for ASOs. The potential benefits of liposomes as an ASO carrier, along with their method of preparation, characterization, routes of administration, and stability aspects, have been thoroughly discussed. A novel perspective in terms of therapeutic applications of liposomal ASO delivery in several diseases such as cancer, respiratory disease, ophthalmic delivery, infectious diseases, gastrointestinal disease, neuronal disorders, hematological malignancies, myotonic dystrophy, and neuronal disorders remains the major highlights of this review.
Collapse
Affiliation(s)
- Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
4
|
Yang Z, Li X, Gan X, Wei M, Wang C, Yang G, Zhao Y, Zhu Z, Wang Z. Hydrogel armed with Bmp2 mRNA-enriched exosomes enhances bone regeneration. J Nanobiotechnology 2023; 21:119. [PMID: 37020301 PMCID: PMC10075167 DOI: 10.1186/s12951-023-01871-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Sustained release of bioactive BMP2 (bone morphogenetic protein-2) is important for bone regeneration, while the intrinsic short half-life of BMP2 at protein level cannot meet the clinical need. In this study, we aimed to design Bmp2 mRNA-enriched engineered exosomes, which were then loaded into specific hydrogel to achieve sustained release for more efficient and safe bone regeneration. RESULTS Bmp2 mRNA was enriched into exosomes by selective inhibition of translation in donor cells, in which NoBody (non-annotated P-body dissociating polypeptide, a protein that inhibits mRNA translation) and modified engineered BMP2 plasmids were co-transfected. The derived exosomes were named ExoBMP2+NoBody. In vitro experiments confirmed that ExoBMP2+NoBody had higher abundance of Bmp2 mRNA and thus stronger osteogenic induction capacity. When loaded into GelMA hydrogel via ally-L-glycine modified CP05 linker, the exosomes could be slowly released and thus ensure prolonged effect of BMP2 when endocytosed by the recipient cells. In the in vivo calvarial defect model, ExoBMP2+NoBody-loaded GelMA displayed great capacity in promoting bone regeneration. CONCLUSIONS Together, the proposed ExoBMP2+NoBody-loaded GelMA can provide an efficient and innovative strategy for bone regeneration.
Collapse
Affiliation(s)
- Zhujun Yang
- Department of Stomatology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xuejian Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, Chengdu, China
| | - Mengying Wei
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chunbao Wang
- College of Chemistry and Bio-Engineering, Yichun University, Yichun, 336000, Jiangxi, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| | - Zhuoli Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, Chengdu, China.
| | - Zhongshan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Barman P, Reddy D, Bhaumik SR. Mechanisms of Antisense Transcription Initiation with Implications in Gene Expression, Genomic Integrity and Disease Pathogenesis. Noncoding RNA 2019; 5:ncrna5010011. [PMID: 30669611 PMCID: PMC6468509 DOI: 10.3390/ncrna5010011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Non-coding antisense transcripts arise from the strand opposite the sense strand. Over 70% of the human genome generates non-coding antisense transcripts while less than 2% of the genome codes for proteins. Antisense transcripts and/or the act of antisense transcription regulate gene expression and genome integrity by interfering with sense transcription and modulating histone modifications or DNA methylation. Hence, they have significant pathological and physiological relevance. Indeed, antisense transcripts were found to be associated with various diseases including cancer, diabetes, cardiac and neurodegenerative disorders, and, thus, have promising potentials for prognostic and diagnostic markers and therapeutic development. However, it is not clearly understood how antisense transcription is initiated and epigenetically regulated. Such knowledge would provide new insights into the regulation of antisense transcription, and hence disease pathogenesis with therapeutic development. The recent studies on antisense transcription initiation and its epigenetic regulation, which are limited, are discussed here. Furthermore, we concisely describe how antisense transcription/transcripts regulate gene expression and genome integrity with implications in disease pathogenesis and therapeutic development.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| | - Divya Reddy
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
6
|
Wang Y, Miao L, Satterlee A, Huang L. Delivery of oligonucleotides with lipid nanoparticles. Adv Drug Deliv Rev 2015; 87:68-80. [PMID: 25733311 DOI: 10.1016/j.addr.2015.02.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 01/16/2023]
Abstract
Since their inception in the 1980s, oligonucleotide-based (ON-based) therapeutics have been recognized as powerful tools that can treat a broad spectrum of diseases. The discoveries of novel regulatory methods of gene expression with diverse mechanisms of action are still driving the development of novel ON-based therapeutics. Difficulties in the delivery of this class of therapeutics hinder their in vivo applications, which forces drug delivery systems to be a prerequisite for clinical translation. This review discusses the strategy of using lipid nanoparticles as carriers to deliver therapeutic ONs to target cells in vitro and in vivo. A discourse on how chemical and physical properties of the lipid materials could be utilized during formulation and the resulting effects on delivery efficiency constitutes the major part of this review.
Collapse
|
7
|
Mechanisms of antisense transcription initiation from the 3' end of the GAL10 coding sequence in vivo. Mol Cell Biol 2013; 33:3549-67. [PMID: 23836882 DOI: 10.1128/mcb.01715-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In spite of the important regulatory functions of antisense transcripts in gene expression, it remains unknown how antisense transcription is initiated. Recent studies implicated RNA polymerase II in initiation of antisense transcription. However, how RNA polymerase II is targeted to initiate antisense transcription has not been elucidated. Here, we have analyzed the association of RNA polymerase II with the antisense initiation site at the 3' end of the GAL10 coding sequence in dextrose-containing growth medium that induces antisense transcription. We find that RNA polymerase II is targeted to the antisense initiation site at GAL10 by Reb1p activator as well as general transcription factors (e.g., TFIID, TFIIB, and Mediator) for antisense transcription initiation. Intriguingly, while GAL10 antisense transcription is dependent on TFIID, its sense transcription does not require TFIID. Further, the Gal4p activator that promotes GAL10 sense transcription is dispensable for antisense transcription. Moreover, the proteasome that facilitates GAL10 sense transcription does not control its antisense transcription. Taken together, our results reveal that GAL10 sense and antisense transcriptions are regulated differently and shed much light on the mechanisms of antisense transcription initiation.
Collapse
|
8
|
Dreyfus DH, Tompkins SM, Fuleihan R, Ghoda LY. Gene silencing in the therapy of influenza and other respiratory diseases: Targeting to RNase P by use of External Guide Sequences (EGS). Biologics 2007; 1:425-32. [PMID: 19707312 PMCID: PMC2721295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Respiratory diseases provide an attractive target for gene silencing using small nucleic acids since the respiratory epithelium can be reached by inhalation therapy. Natural surfactant appears to facilitate the uptake and distribution of these types of molecules making aerosolized nucleic acids a possible new class of therapeutics. This article will review the rationale for the use of External Guide Sequence (EGS) in targeting specific mRNA molecules for RNase P-mediated intracellular destruction. Specific destruction of target mRNA results in gene-specific silencing similar to that instigated by siRNA via the RISC complex. The application of EGS molecules specific for influenza genes are discussed as well as the potential for synergy with siRNA. Furthermore, EGS could be adapted to target other respiratory diseases of viral etiology as well as conditions such as asthma.
Collapse
Affiliation(s)
- David H Dreyfus
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA;, Keren Pharmaceuticals, New Haven, CT, USA
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Ramsay Fuleihan
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Lucy Y Ghoda
- Keren Pharmaceuticals, New Haven, CT, USA;, The Webb-Waring Institute and the Department of Medicine, University of Colorado Health Sciences Center, Denver, CO,Correspondence: Lucy Y Ghoda, The Webb-Waring Institute, UCDHSC, 4200 East Ninth Ave, Campus Box C321, Denver, CO 80262, USA, Tel +1 303 315 7961, Email
| |
Collapse
|
9
|
Liu SJ, Zhang DQ, Sui XM, Zhang L, Cai ZW, Sun LQ, Liu YJ, Xue Y, Hu GF. The inhibition of in vivo tumorigenesis of osteosarcoma (OS)-732 cells by antisense human osteopontin RNA. Cell Mol Biol Lett 2007; 13:11-9. [PMID: 17952379 PMCID: PMC6275891 DOI: 10.2478/s11658-007-0031-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 05/22/2007] [Indexed: 11/20/2022] Open
Abstract
Osteopontin (OPN) is a secreted, non-collagenous, sialic acid-rich protein which functions by mediating cell-matrix interactions and cellular signaling via binding with integrins and CD44 receptors. An increasing number of studies have shown that OPN plays an important role in controlling cancer progression and metastasis. OPN was found to be expressed in many human cancer types, and in some cases, its over-expression was shown to be directly associated with poor patient prognosis. In vitro cancer cell line and animal model studies have clearly indicated that OPN can function in regulating the cell signaling that ultimately controls the oncogenic potential of various cancers. Previous studies in our laboratory demonstrated that OPN is highly expressed in human osteosarcoma (OS) cell line OS-732. In this study, we successfully reduced the tumorigenecity of OS-732 cells xenotransplanted into nude mice, using the antisense human OPN (hOPN) RNA expression vector.
Collapse
Affiliation(s)
- Si-Jin Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China. s
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Popescu FD, Popescu F. A review of antisense therapeutic interventions for molecular biological targets in asthma. Biologics 2007; 1:271-83. [PMID: 19707336 PMCID: PMC2721314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Modern tools of genomics and proteomics reveal potential therapeutic antisense targets in asthma, increasing the interest in the development of anti-mRNA drugs. In allergic asthma experimental models, antisense oligonucleotides (ASO) are administered by inhalation or systemically. ASO can be used for a large number of molecular targets: cell membrane receptors (G-protein coupled receptors, cytokine and chemokine receptors), membrane proteins, ion channels, cytokines and related factors, signaling non-receptor protein kinases (tyrosine kinases, and serine/threonine kinases) and regulators of transcription belonging to Cys4 zinc finger of nuclear receptor type or beta-scaffold factors with minor groove contacts classes/superclasses of transcription factors. A respirable ASO against the adenosine A(1) receptor was investigated in human trials. RNase P-associated external guide sequence (EGS) delivered into pulmonary tissues represents a potentially new therapeutic approach in asthma as well as ribozyme strategies. Small interfering RNA (siRNA) targeting key molecules involved in the patho-physiology of allergic asthma are expected to be of benefit as RNAi immunotherapy. Antagomirs, synthetic analogs of microRNA (miRNA), have important roles in regulation of gene expression in asthma. RNA interference (RNAi) technologies offer higher efficiency in suppressing the expression of specific genes, compared with traditional antisense approaches.
Collapse
Affiliation(s)
- Florin-Dan Popescu
- Department of Allergology, University of Medicine and Pharmacy, “Carol Davila”, Bucharest, Romania
| | - Florica Popescu
- Department of Pharmacology, University of Medicine and Pharmacy, Craiova, Romania,Correspondence: Florin-Dan Popescu, Department of Allergology, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania, Hospital “Nicolae Malaxa”, 12 Sos. Vergului, Bucharest, sector 2, Romania, Tel +40 721 380266, Email
| |
Collapse
|