1
|
Vandecruys P, Baldewijns S, Sillen M, Van Genechten W, Van Dijck P. Oteseconazole: a long-awaited diversification of the antifungal arsenal to manage recurrent vulvovaginal candidiasis (RVVC). Expert Rev Anti Infect Ther 2023; 21:799-812. [PMID: 37449774 DOI: 10.1080/14787210.2023.2233696] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Recurrent vulvovaginal candidiasis (RVVC) affects women worldwide and has far-reaching implications for a patient's quality of life. For decades, maintenance treatment using the azole antifungal fluconazole was the preferred treatment. Although efficient in controlling the symptoms, the development of azole resistance and high rates of recurrence after therapy cessation have emerged as significant limitations. Nevertheless, persistent efforts have delivered novel treatment options. Oteseconazole (VT-1161), marketed as VIVJOA, is an oral, tetrazole antifungal with unprecedented specificity toward the fungal lanosterol 14α-demethylase. AREAS COVERED We reviewed literature data on oteseconazole with a focus on the management of RVVC. EXPERT OPINION Therapeutic options for RVVC are limited, and novel, innovative approaches are needed to treat this debilitating condition. These therapies need to be well-tolerated and prevent RVVC recurrence. The available clinical data show excellent safety and efficacy, with an unprecedentedly low recurrence rate. However, we believe health-care providers should be mindful to monitor for the development of resistance, as this may result in treatment failure. Further, the availability and cost may, like for most novel drugs, affect the widespread clinical implementation of VIVJOA. Altogether, we are convinced that VIVJOA is a significant advance in RVVC management.
Collapse
Affiliation(s)
- Paul Vandecruys
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Silke Baldewijns
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mart Sillen
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Wouter Van Genechten
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Bi Q, Wang C, Cheng G, Chen N, Wei B, Liu X, Li L, Lu C, He J, Weng Y, Yin C, Lin Y, Wan S, Zhao L, Xu J, Wang Y, Gu Y, Shen XZ, Shi P. Microglia-derived PDGFB promotes neuronal potassium currents to suppress basal sympathetic tonicity and limit hypertension. Immunity 2022; 55:1466-1482.e9. [PMID: 35863346 DOI: 10.1016/j.immuni.2022.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
Although many studies have addressed the regulatory circuits affecting neuronal activities, local non-synaptic mechanisms that determine neuronal excitability remain unclear. Here, we found that microglia prevented overactivation of pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) at steady state. Microglia constitutively released platelet-derived growth factor (PDGF) B, which signaled via PDGFRα on neuronal cells and promoted their expression of Kv4.3, a key subunit that conducts potassium currents. Ablation of microglia, conditional deletion of microglial PDGFB, or suppression of neuronal PDGFRα expression in the PVN elevated the excitability of pre-sympathetic neurons and sympathetic outflow, resulting in a profound autonomic dysfunction. Disruption of the PDGFBMG-Kv4.3Neuron pathway predisposed mice to develop hypertension, whereas central supplementation of exogenous PDGFB suppressed pressor response when mice were under hypertensive insult. Our results point to a non-immune action of resident microglia in maintaining the balance of sympathetic outflow, which is important in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Qianqian Bi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Wang
- Center of Stem Cell and Regenerative Medicine and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guo Cheng
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ningting Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Bo Wei
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Li
- Department of Pharmacy, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
| | - Cheng Lu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jian He
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuancheng Weng
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chunyou Yin
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yunfan Lin
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
| | - Shu Wan
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, China
| | - Yi Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiao Z Shen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
3
|
Noda S, Morita SY, Terada T. Dose Individualization of Oral Multi-Kinase Inhibitors for the Implementation of Therapeutic Drug Monitoring. Biol Pharm Bull 2022; 45:814-823. [PMID: 35786588 DOI: 10.1248/bpb.b21-01098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oral multi-kinase inhibitors have transformed the treatment landscape for various cancer types and provided significant improvements in clinical outcomes. These agents are mainly approved at fixed doses, but the large inter-individual variability in pharmacokinetics and pharmacodynamics (efficacy and safety) has been an unsolved clinical issue. For example, certain patients treated with oral multi-kinase inhibitors at standard doses have severe adverse effects and require dose reduction and discontinuation, yet other patients have a suboptimal response to these drugs. Consequently, optimizing the dosing of oral multi-kinase inhibitors is important to prevent over-dosing or under-dosing. To date, multiple studies on the exposure-efficacy/toxicity relationship of molecular targeted therapy have been attempted for the implementation of therapeutic drug monitoring (TDM) strategies. In this milieu, we recently conducted research on several multi-kinase inhibitors, such as sunitinib, pazopanib, sorafenib, and lenvatinib, with the aim to optimize their treatment efficacy using a pharmacokinetic/pharmacodynamic approach. Among them, sunitinib use is an example of successful TDM implementation. Sunitinib demonstrated a significant correlation between drug exposure and treatment efficacy or toxicities. As a result, TDM services for sunitinib has been covered by the National Health Insurance program in Japan since April 2018. Additionally, other multi-kinase targeted anticancer drugs have promising data regarding the exposure-efficacy/toxicity relationship, suggesting the possibility of personalization of drug dosage. In this review, we provide a comprehensive summary of the clinical evidence for dose individualization of multi-kinase inhibitors and discuss the utility of TDM of multi-kinase inhibitors, especially sunitinib, pazopanib, sorafenib, and lenvatinib.
Collapse
Affiliation(s)
- Satoshi Noda
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital.,Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| |
Collapse
|
4
|
Qin J, Cheng W, Duan YT, Yang H, Yao Y. Indazole as a Privileged Scaffold: The Derivatives and their Therapeutic Applications. Anticancer Agents Med Chem 2021; 21:839-860. [PMID: 32819234 DOI: 10.2174/1871520620999200818160350] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heterocyclic compounds, also called heterocycles, are a major class of organic chemical compound that plays a vital role in the metabolism of all living cells. The heterocyclic compound, indazole, has attracted more attention in recent years and is widely present in numerous commercially available drugs. Indazole-containing derivatives, representing one of the most important heterocycles in drug molecules, are endowed with a broad range of biological properties. METHODS A literature search was conducted in PubMed, Google Scholar and Web of Science regarding articles related to indazole and its therapeutic application. RESULTS The mechanism and structure-activity relationship of indazole and its derivatives were described. Based on their versatile biological activities, the compounds were divided into six groups: anti-inflammatory, antibacterial, anti-HIV, antiarrhythmic, antifungal and antitumour. At least 43 indazole-based therapeutic agents were found to be used in clinical application or clinical trials. CONCLUSION This review is a guide for pharmacologists who are in search of valid preclinical/clinical drug compounds where the progress of approved marketed drugs containing indazole scaffold is examined from 1966 to the present day. Future direction involves more diverse bioactive moieties with indazole scaffold and greater insights into its mechanism.
Collapse
Affiliation(s)
- Jinling Qin
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Weyland Cheng
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| | - Hua Yang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| |
Collapse
|
5
|
|
6
|
Chappell JC, Payne LB, Rathmell WK. Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J Clin Invest 2019; 129:442-451. [PMID: 30614813 DOI: 10.1172/jci120855] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The field of hereditary kidney cancer has begun to mature following the identification of several germline syndromes that define genetic and molecular features of this cancer. Molecular defects within these hereditary syndromes demonstrate consistent deficits in angiogenesis and metabolic signaling, largely driven by altered hypoxia signaling. The classical mutation, loss of function of the von Hippel-Lindau (VHL) tumor suppressor, provides a human pathogenesis model for critical aspects of pseudohypoxia. These features are mimicked in a less common hereditary renal tumor syndrome, known as hereditary leiomyomatosis and renal cell carcinoma. Here, we review renal tumor angiogenesis and metabolism from a HIF-centric perspective, considering alterations in the hypoxic landscape, and molecular deviations resulting from high levels of HIF family members. Mutations underlying HIF deregulation drive multifactorial aberrations in angiogenic signals and metabolism. The mechanisms by which these defects drive tumor growth are still emerging. However, the distinctive patterns of angiogenesis and glycolysis-/glutamine-dependent bioenergetics provide insight into the cellular environment of these cancers. The result is a scenario permissive for aggressive tumorigenesis especially within the proximal renal tubule. These features of tumorigenesis have been highly actionable in kidney cancer treatments, and will likely continue as central tenets of kidney cancer therapeutics.
Collapse
Affiliation(s)
- John C Chappell
- Center for Heart and Regenerative Medicine, Departments of Biomedical Sciences and Biomedical Engineering and Mechanics, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Laura Beth Payne
- Center for Heart and Regenerative Medicine, Departments of Biomedical Sciences and Biomedical Engineering and Mechanics, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - W Kimryn Rathmell
- Vanderbilt-Ingram Cancer Center, Departments of Medicine and Biochemistry, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Presurgical pazopanib for renal cell carcinoma with inferior vena caval thrombus: a single-institution study. Anticancer Drugs 2018; 29:565-571. [PMID: 29629905 DOI: 10.1097/cad.0000000000000627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this study was to investigate the clinical benefit of presurgical therapy with pazopanib in renal cell carcinoma (RCC) patients with a tumor thrombus extending to a high level in the vena cava. A retrospective review was performed for seven consecutive patients with RCC and tumor thrombus involving the vena cava above the hepatic vein (level 3-4, Mayo Clinic classification) treated with pazopanib without initial cytoreductive nephrectomy at our institution. The effect of pazopanib was assessed in terms of the primary site response, thrombus diameter, and height (before and after treatment) on computed tomography or MRI. The tumor thrombus level before the induction of pazopanib was 3 in one patient and 4 in the remaining six patients. After pazopanib, shrinkage of the primary site and thrombus diameter and length were observed in all patients except one (with a rhabdoid tumor). The mean decreases of primary tumor diameter, tumor thrombus diameter, and length were 14, 9, and 31 mm, respectively. The tumor thrombus level decreased in three (43%) patients and remained stable in the remaining patient. Our findings suggest that presurgical treatment with pazopanib may shrink the tumor thrombus and decrease the surgical invasiveness in RCC patients with a high-level tumor thrombus.
Collapse
|
8
|
Gaumann AKA, Kiefer F, Alfer J, Lang SA, Geissler EK, Breier G. Receptor tyrosine kinase inhibitors: Are they real tumor killers? Int J Cancer 2015; 138:540-54. [PMID: 25716346 DOI: 10.1002/ijc.29499] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/13/2015] [Indexed: 12/11/2022]
Abstract
Inhibiting tumor growth by targeting the tumor vasculature was first proposed by Judah Folkman almost 40 years ago. Since then, different approaches and numerous drugs and agents have been developed to achieve this goal, either with the aim of inhibiting tumor neoangiogenesis or normalizing the tumor vasculature. Among the most promising therapeutic targets are receptor tyrosine kinases (RTKs), some of which are predominantly expressed on tumor endothelial cells, although they are sometimes also present on tumor cells. The majority of RTK inhibitors investigated over the past two decades competes with ATP at the active site of the kinase and therefore block the phosphorylation of intracellular targets. Some of these drugs have been approved for therapy, whereas others are still in clinical trials. Here, we discuss the scientific basis, current status, problems and future prospects of RTK inhibition in anti-tumor therapy.
Collapse
Affiliation(s)
- Andreas K A Gaumann
- Institute of Pathology Kaufbeuren-Ravensburg, Kaufbeuren, Germany
- Institute of Pathology, University of Regensburg, Medical Center, Regensburg, Germany
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine-Westphalia, Germany
| | - Joachim Alfer
- Institute of Pathology Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Sven A Lang
- Department of Surgery, University of Regensburg, Medical Center, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, University of Regensburg, Medical Center, Regensburg, Germany
| | - Georg Breier
- Institute of Pathology, Technical University Dresden, Dresden, Germany
| |
Collapse
|
9
|
McCormack PL. Pazopanib: A Review of Its Use in the Management of Advanced Renal Cell Carcinoma. Drugs 2014; 74:1111-25. [DOI: 10.1007/s40265-014-0243-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
|
11
|
Pazopanib therapy for cerebellar hemangioblastomas in von Hippel-Lindau disease: case report. Target Oncol 2012; 7:145-9. [PMID: 22374327 DOI: 10.1007/s11523-012-0214-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
von Hippel-Lindau (VHL) disease is a genetically acquired multisystem tumor syndrome of the viscera and central nervous system (CNS). The most common tumors associated with this disease are histologically benign, slow-growing CNS hemangioblastomas affecting the retina, cerebellum, brainstem, spinal cord or nerve roots. With mean age at diagnosis of 30 years, CNS hemangioblastomas are usually the first manifestation of the disease. Ongoing clinical and radiological surveillance is required, with symptomatic lesions necessitating treatment. As tumor growth is inevitable during the lifetime of most VHL patients, and the multiplicity of tumors may preclude surgical cure, the search for effective therapies is ongoing. Here we provide the first report demonstrating clinical and radiological anti-tumor response using pazopanib, a small molecule multi-receptor tyrosine kinase inhibitor, in a patient with treatment-refractory VHL-associated CNS hemangioblastoma. Treatment initiation with daily oral pazopanib (800 mg/day) resulted in significant neurologic improvement and radiologic tumor volume reduction.
Collapse
|
12
|
Kim MS. Future Cancer Therapy with Molecularly Targeted Therapeutics: Challenges and Strategies. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.4.371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
13
|
Current World Literature. Curr Opin Support Palliat Care 2011; 5:297-305. [DOI: 10.1097/spc.0b013e32834a76ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|