1
|
M S AKB, Mohan S, K T A, Chandramouli M, Alaganandam K, Ningaiah S, Babu KS, Somappa SB. Marine Based Natural Products: Exploring the Recent Developments in the Identification of Antimicrobial Agents. Chem Biodivers 2022; 19:e202200513. [PMID: 36000304 DOI: 10.1002/cbdv.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
The marine ecosystem is the less explored, biologically diverse, and vastest resource to discover novel antimicrobial agents. In recent decades' antimicrobial drugs are losing their effectiveness due to the growing resistance among pathogens, which causes diseases to have considerable death rates across the globe. Therefore, there is a need for the discovery of new antibacterials that can reach the market. There is a gradual growth of compounds from marine sources which are entering the clinical trials. Thus, the prominence of marine natural products in the field of drug design and discovery across the academia and pharmaceutical industry is gaining attention. Herein, the present review covers nearly 200 marine based antimicrobial agents of 11 structural classes discovered from the year 2010 to 2022. All the discussed compounds have exhibited medium to high antimicrobial activity in inhibiting various microorganisms.
Collapse
Affiliation(s)
- Ajay Krishna B M S
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology Division, Sir C V Raman Buiding, Chemical Sciences and Technology Division, 695019, Thiruvanathapuram, INDIA
| | - Sangeetha Mohan
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology Division, Sir C V Raman Buiding, Chemical Sciences and Technology Division, CSIR-NIIST, 695019, Thiruvananthapuram, INDIA
| | - Ashitha K T
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology Division, Sir C V Raman Buiding, Chemical Sciences and Technology Division, 695019, Thiruvananthapuram, INDIA
| | - Manasa Chandramouli
- Visvesvaraya Technological University, School of Chemistry, Visvesvaraya Technological University, 570 002, Mysore, INDIA
| | - Kumaran Alaganandam
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology Division, Sir C V Raman Buiding, Chemical Sciences and Technology Division, TC 51/2151, Lal Lane, Industrial estate po., 695019, Thiruvananthapuram, INDIA
| | - Srikantamurthy Ningaiah
- Visvesvaraya Technological University, School of Chemistry, Vidyavardhaka College of Engineering, CSIR-NIIST, 570 002, Mysore, INDIA
| | - K Suresh Babu
- IICT: Indian Institute of Chemical Technology, Natural Products and Drug Discovery, IICT Campus, Hyderabad, INDIA
| | - Sasidhar B Somappa
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Organic Chemistry Section, Chemical Sciences and Technology Division, Sir C V Raman Block, Chemical Sciences and Technology Division, Industrial estate po., 695019, Thiruvananthapuram, INDIA
| |
Collapse
|
2
|
Saito S, Indo K, Oku N, Komaki H, Kawasaki M, Igarashi Y. Unsaturated fatty acids and a prenylated tryptophan derivative from a rare actinomycete of the genus Couchioplanes. Beilstein J Org Chem 2021; 17:2939-2949. [PMID: 34956414 PMCID: PMC8685556 DOI: 10.3762/bjoc.17.203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
A genome mining survey combined with metabolome analysis of publicly available strains identified Couchioplanes sp. RD010705, a strain belonging to an underexplored genus of rare actinomycetes, as a producer of new metabolites. HPLC-DAD-guided fractionation of its fermentation extracts resulted in the isolation of five new methyl-branched unsaturated fatty acids, (2E,4E)-2,4-dimethyl-2,4-octadienoic acid (1), (2E,4E)-2,4,7-trimethyl-2,4-octadienoic acid (2), (R)-(-)-phialomustin B (3), (2E,4E)-7-hydroxy-2,4-dimethyl-2,4-octadienoic acid (4), (2E,4E)-7-hydroxy-2,4,7-trimethyl-2,4-octadienoic acid (5), and one prenylated tryptophan derivative, 6-(3,3-dimethylallyl)-N-acetyl-ʟ-tryptophan (6). The enantiomer ratio of 4 was determined to be approximately S/R = 56:44 by a recursive application of Trost's chiral anisotropy analysis and chiral HPLC analysis of its methyl ester. Compounds 1-5 were weakly inhibitory against Kocuria rhizophila at MIC 100 μg/mL and none were cytotoxic against P388 at the same concentration.
Collapse
Affiliation(s)
- Shun Saito
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kanji Indo
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Hisayuki Komaki
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Kisarazu, Chiba 292-0818, Japan
| | - Masashi Kawasaki
- Center for Liberal Arts and Sciences, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
3
|
Bozkurt HS, Kara B. Combination of oral vancomycin and intra-colonic vancomycin: Successful treatment of complicated pseudomembranous colitis in a child patient. SAGE Open Med Case Rep 2019; 7:2050313X19838442. [PMID: 30911393 PMCID: PMC6425522 DOI: 10.1177/2050313x19838442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/27/2019] [Indexed: 02/04/2023] Open
Abstract
The Clostridium difficile infection–related disease varies from mild diarrhoea to pseudomembranouscolitis. Although C. difficile infection is commonly considered to be a hospital-acquired infection, a significant number of cases are community acquired. Community-acquired C. difficile infection can exhibit itself as ileus or toxic megacolon. Severe C. difficile infection that is unresponsive to intravenous metronidazole therapy requires more aggressive medical management and even surgical intervention. We present our case results for which vancomycin was administered both orally and intra-colonically. With this method, we treated the community acquired C. difficile infection patient who was presented as ileus.
Collapse
Affiliation(s)
- Hüseyin Sancar Bozkurt
- Clinic of Gastroenterology, Medical Faculty Internal Medicine, Maltepe University, Maltepe, Turkey
| | - Banu Kara
- Clinic of Gastroenterology, Adana City Research and Education Hospital, University of Health Sciences, Adana, Turkey
| |
Collapse
|
4
|
Hattori H, Kaufmann E, Miyatake-Ondozabal H, Berg R, Gademann K. Total Synthesis of Tiacumicin A. Total Synthesis, Relay Synthesis, and Degradation Studies of Fidaxomicin (Tiacumicin B, Lipiarmycin A3). J Org Chem 2018; 83:7180-7205. [DOI: 10.1021/acs.joc.8b00101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hiromu Hattori
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Elias Kaufmann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | | | - Regina Berg
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
5
|
Koon HW, Wang J, Mussatto CC, Ortiz C, Lee EC, Tran DHN, Chen X, Kelly CP, Pothoulakis C. Fidaxomicin and OP-1118 Inhibit Clostridium difficile Toxin A- and B-Mediated Inflammatory Responses via Inhibition of NF-κB Activity. Antimicrob Agents Chemother 2018; 62:e01513-17. [PMID: 29038278 PMCID: PMC5740352 DOI: 10.1128/aac.01513-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2017] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile causes diarrhea and colitis by releasing toxin A and toxin B. In the human colon, both toxins cause intestinal inflammation and stimulate tumor necrosis factor alpha (TNF-α) expression via the activation of NF-κB. It is well established that the macrolide antibiotic fidaxomicin is associated with reduced relapses of C. difficile infection. We showed that fidaxomicin and its primary metabolite OP-1118 significantly inhibited toxin A-mediated intestinal inflammation in mice in vivo and toxin A-induced cell rounding in vitro We aim to determine whether fidaxomicin and OP-1118 possess anti-inflammatory effects against toxin A and toxin B in the human colon and examine the mechanism of this response. We used fresh human colonic explants, NCM460 human colonic epithelial cells, and RAW264.7 mouse macrophages to study the mechanism of the activity of fidaxomicin and OP-1118 against toxin A- and B-mediated cytokine expression and apoptosis. Fidaxomicin and OP-1118 dose-dependently inhibited toxin A- and B-induced TNF-α and interleukin-1β (IL-1β) mRNA expression and histological damage in human colonic explants. Fidaxomicin and OP-1118 inhibited toxin A-mediated NF-κB phosphorylation in human and mouse intestinal mucosae. Fidaxomicin and OP-1118 also inhibited toxin A-mediated NF-κB phosphorylation and TNF-α expression in macrophages, which was reversed by the NF-κB activator phorbol myristate acetate (PMA). Fidaxomicin and OP-1118 prevented toxin A- and B-mediated apoptosis in NCM460 cells, which was reversed by the addition of PMA. PMA reversed the cytoprotective effect of fidaxomicin and OP-1118 in toxin-exposed human colonic explants. Fidaxomicin and OP-1118 inhibit C. difficile toxin A- and B-mediated inflammatory responses, NF-κB phosphorylation, and tissue damage in the human colon.
Collapse
Affiliation(s)
- Hon Wai Koon
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Jiani Wang
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - Caroline C Mussatto
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Christina Ortiz
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Elaine C Lee
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Diana Hoang-Ngoc Tran
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ciaran P Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Charalabos Pothoulakis
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Kaufmann E, Hattori H, Miyatake-Ondozabal H, Gademann K. Total Synthesis of the Glycosylated Macrolide Antibiotic Fidaxomicin. Org Lett 2015; 17:3514-7. [PMID: 26125969 DOI: 10.1021/acs.orglett.5b01602] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The first enantioselective total synthesis of fidaxomicin, also known as tiacumicin B or lipiarmycin A3, is reported. This novel glycosylated macrolide antibiotic is used in the clinic for the treatment of Clostridium difficile infections. Key features of the synthesis involve a rapid and high-yielding access to the noviose, rhamnose, and orsellinic acid precursors; the first example of a β-selective noviosylation; an effective Suzuki coupling of highly functionalized substrates; and a ring-closing metathesis reaction of a noviosylated dienoate precursor. Careful selection of protecting groups allowed for a complete deprotection yielding totally synthetic fidaxomicin.
Collapse
Affiliation(s)
- Elias Kaufmann
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Hiromu Hattori
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | | | - Karl Gademann
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Fidaxomicin inhibits Clostridium difficile toxin A-mediated enteritis in the mouse ileum. Antimicrob Agents Chemother 2014; 58:4642-50. [PMID: 24890583 DOI: 10.1128/aac.02783-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clostridium difficile infection (CDI) is a common, debilitating infection with high morbidity and mortality. C. difficile causes diarrhea and intestinal inflammation by releasing two toxins, toxin A and toxin B. The macrolide antibiotic fidaxomicin was recently shown to be effective in treating CDI, and its beneficial effect was associated with fewer recurrent infections in CDI patients. Since other macrolides possess anti-inflammatory properties, we examined the possibility that fidaxomicin alters C. difficile toxin A-induced ileal inflammation in mice. The ileal loops of anesthetized mice were injected with fidaxomicin (5, 10, or 20 μM), and after 30 min, the loops were injected with purified C. difficile toxin A or phosphate-buffered saline alone. Four hours after toxin A administration, ileal tissues were processed for histological evaluation (epithelial cell damage, neutrophil infiltration, congestion, and edema) and cytokine measurements. C. difficile toxin A caused histologic damage, evidenced by increased mean histologic score and ileal interleukin-1β (IL-1β) protein and mRNA expression. Treatment with fidaxomicin (20 μM) or its primary metabolite, OP-1118 (120 μM), significantly inhibited toxin A-mediated histologic damage and reduced the mean histology score and ileal IL-1β protein and mRNA expression. Both fidaxomicin and OP-1118 reduced toxin A-induced cell rounding in human colonic CCD-18Co fibroblasts. Treatment of ileal loops with vancomycin (20 μM) and metronidazole (20 μM) did not alter toxin A-induced histologic damage and IL-1β protein expression. In addition to its well known antibacterial effects against C. difficile, fidaxomicin may possess anti-inflammatory activity directed against the intestinal effects of C. difficile toxins.
Collapse
|
8
|
Barbut F, Guery B, Eckert C. Comment traiter une infection digestive à Clostridium difficile en 2014 ? ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13546-014-0867-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Brashier DS, Khanapure A, Sharma AK. Fidaxomicin: A new fight against clostridium difficile-associated diarrhea. MULLER JOURNAL OF MEDICAL SCIENCES AND RESEARCH 2014. [DOI: 10.4103/0975-9727.135753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
|
11
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to summarize the recent developments in small intestinal bacterial infections. RECENT FINDINGS This review focuses on aspects of intestinal bacterial infection concerning research developments related to pathogenesis, new therapeutic agents and approaches, as well as potential new vaccine targets. SUMMARY In terms of drug utilization, azithromycin was successfully used to eradicate a Shiga toxin producing Escherichia coli (enterohemorrhagic E. coli) without harmful effects. In the case of Clostridium difficile, fidaxomicin was found to be comparable to or superior to vancomycin depending on study conditions and whether there was concomitant antibiotic use. A novel research finding is the role of galectin 8, which is a danger-sensing lectin, which plays a role in targeting Salmonella for autophagy. In addition, several enteropathogenic E. coli and Shigella effectors were found to inactivate members of the nuclear factor kappa B pathway.
Collapse
|
12
|
Abstract
BACKGROUND The clinical implication of Clostridium difficile infection (CDI) in patients with ileal pouch-anal anastomosis (IPAA) for underlying inflammatory bowel disease (IBD) has not been well studied. This study was designed to investigate the cumulative incidence, risk factors, and outcome of CDI in patients with ileal pouches. METHODS Consecutive IPAA patients (n = 196) from the subspecialty Pouchitis Clinic with an increase of at least three stools per day more from the postoperative baseline for more than 4 weeks were enrolled from October 2010 to December 2011. CDI was diagnosed based on the presence of symptoms and positive polymerase chain reaction (PCR)-based stool test for C. difficile toxin B. Risk factors for CDI were assessed with univariate and multivariate analyses. All patients with CDI (n = 21) were treated with oral vancomycin (500 - 1000 mg/day) for 2-4 weeks. The treatment outcome of these patients was documented. RESULTS Twenty-one patients (10.7%) were diagnosed with CDI. On univariate analysis, patients with CDI had more stool frequency (P = 0.014) and significant current weight loss (P = 0.003) than patients with no CDI. In logistic regression analysis, there was a trend that recent hospitalization (odds ratio [OR] = 4.00, 95% confidence interval [CI], 0.95-16.84) might be associated with CDI. Of the 14 CDI patients with follow-up data, eight (57.1%) had either recurrent (n = 5) or refractory (n = 3) CDI after oral vancomycin therapy. CONCLUSIONS A high index of suspicion for CDI in pouch patients should be given to those with recent hospitalization or constitutional symptoms, such as weight loss. Recurrent or refractory CDI is common, even with standard oral vancomycin therapy.
Collapse
|
13
|
Abstract
Non-systemic drugs act within the intestinal lumen without reaching the systemic circulation. The first generation included polymeric resins that sequester phosphate ions, potassium ions, or bile acids for the treatment of electrolyte imbalances or hypercholesteremia. The field has evolved towards non-absorbable small molecules or peptides targeting luminal enzymes or transporters for the treatment of mineral metabolism disorders, diabetes, gastrointestinal (GI) disorders, and enteric infections. From a drug design and development perspective, non-systemic agents offer novel opportunities to address unmet medical needs while minimizing toxicity risks, but also present new challenges, including developing a better understanding and control of non-transcellular leakage pathways into the systemic circulation. The pharmacokinetic-pharmacodynamic relationship of drugs acting in the GI tract can be complex due to the variability of intestinal transit, interaction with chyme, and the complex environment of the surface epithelia. We review the main classes of nonabsorbable agents at various stages of development, and their therapeutic potential and limitations. The rapid progress in the identification of intestinal receptors and transporters, their functional characterization and role in metabolic and inflammatory disorders, will undoubtedly renew interest in the development of novel, safe, non-systemic therapeutics.
Collapse
|
14
|
Scott LJ, Lyseng-Williamson KA, Duggan ST. Fidaxomicin: a guide to its use in Clostridium difficile infection. DRUGS & THERAPY PERSPECTIVES 2012. [DOI: 10.2165/1120929-000000000-00000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Y a-t-il quand même des antibiotiques dans le pipeline ? MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-012-0466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|