Sóki J. Extended role for insertion sequence elements in the antibiotic resistance of
Bacteroides.
World J Clin Infect Dis 2013;
3:1-12. [DOI:
10.5495/wjcid.v3.i1.1]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/04/2012] [Accepted: 12/17/2012] [Indexed: 02/06/2023] Open
Abstract
The Bacteroides species are important micro-organisms, both in the normal physiology of the intestines and as frequent opportunistic anaerobic pathogens, with a deeply-rooted phylogenetic origin endowing them with some interesting biological features. Their prevalence in anaerobic clinical specimens is around 60%-80%, and they display the most numerous and highest rates of antibiotic resistance among all pathogenic anaerobes. In these antibiotic resistance mechanisms there is a noteworthy role for the insertion sequence (IS) elements, which are usually regarded as representatives of ‘selfish’ genes; the IS elements of Bacteroides are usually capable of up-regulating the antibiotic resistance genes. These include the cepA (penicillin and cephalosporin), cfxA (cephamycin), cfiA (carbapenem), nim (metronidazole) and ermF (clindamycin) resistance genes. This is achieved by outward-oriented promoter sequences on the ISs. Although some representatives are well characterized, e.g., the resistance gene-IS element pairs in certain resistant strains, open questions remain in this field concerning a better understanding of the molecular biology of the antibiotic resistance mechanisms of Bacteroides, which will have clinical implications.
Collapse