1
|
Di Pietrantonj C, Rivetti A, Marchione P, Debalini MG, Demicheli V. Vaccines for measles, mumps, rubella, and varicella in children. Cochrane Database Syst Rev 2021; 11:CD004407. [PMID: 34806766 PMCID: PMC8607336 DOI: 10.1002/14651858.cd004407.pub5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Measles, mumps, rubella, and varicella (chickenpox) are serious diseases that can lead to serious complications, disability, and death. However, public debate over the safety of the trivalent MMR vaccine and the resultant drop in vaccination coverage in several countries persists, despite its almost universal use and accepted effectiveness. This is an update of a review published in 2005 and updated in 2012. OBJECTIVES To assess the effectiveness, safety, and long- and short-term adverse effects associated with the trivalent vaccine, containing measles, rubella, mumps strains (MMR), or concurrent administration of MMR vaccine and varicella vaccine (MMR+V), or tetravalent vaccine containing measles, rubella, mumps, and varicella strains (MMRV), given to children aged up to 15 years. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2019, Issue 5), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE (1966 to 2 May 2019), Embase (1974 to 2 May 2019), the WHO International Clinical Trials Registry Platform (2 May 2019), and ClinicalTrials.gov (2 May 2019). SELECTION CRITERIA We included randomised controlled trials (RCTs), controlled clinical trials (CCTs), prospective and retrospective cohort studies (PCS/RCS), case-control studies (CCS), interrupted time-series (ITS) studies, case cross-over (CCO) studies, case-only ecological method (COEM) studies, self-controlled case series (SCCS) studies, person-time cohort (PTC) studies, and case-coverage design/screening methods (CCD/SM) studies, assessing any combined MMR or MMRV / MMR+V vaccine given in any dose, preparation or time schedule compared with no intervention or placebo, on healthy children up to 15 years of age. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the methodological quality of the included studies. We grouped studies for quantitative analysis according to study design, vaccine type (MMR, MMRV, MMR+V), virus strain, and study settings. Outcomes of interest were cases of measles, mumps, rubella, and varicella, and harms. Certainty of evidence of was rated using GRADE. MAIN RESULTS We included 138 studies (23,480,668 participants). Fifty-one studies (10,248,159 children) assessed vaccine effectiveness and 87 studies (13,232,509 children) assessed the association between vaccines and a variety of harms. We included 74 new studies to this 2019 version of the review. Effectiveness Vaccine effectiveness in preventing measles was 95% after one dose (relative risk (RR) 0.05, 95% CI 0.02 to 0.13; 7 cohort studies; 12,039 children; moderate certainty evidence) and 96% after two doses (RR 0.04, 95% CI 0.01 to 0.28; 5 cohort studies; 21,604 children; moderate certainty evidence). The effectiveness in preventing cases among household contacts or preventing transmission to others the children were in contact with after one dose was 81% (RR 0.19, 95% CI 0.04 to 0.89; 3 cohort studies; 151 children; low certainty evidence), after two doses 85% (RR 0.15, 95% CI 0.03 to 0.75; 3 cohort studies; 378 children; low certainty evidence), and after three doses was 96% (RR 0.04, 95% CI 0.01 to 0.23; 2 cohort studies; 151 children; low certainty evidence). The effectiveness (at least one dose) in preventing measles after exposure (post-exposure prophylaxis) was 74% (RR 0.26, 95% CI 0.14 to 0.50; 2 cohort studies; 283 children; low certainty evidence). The effectiveness of Jeryl Lynn containing MMR vaccine in preventing mumps was 72% after one dose (RR 0.24, 95% CI 0.08 to 0.76; 6 cohort studies; 9915 children; moderate certainty evidence), 86% after two doses (RR 0.12, 95% CI 0.04 to 0.35; 5 cohort studies; 7792 children; moderate certainty evidence). Effectiveness in preventing cases among household contacts was 74% (RR 0.26, 95% CI 0.13 to 0.49; 3 cohort studies; 1036 children; moderate certainty evidence). Vaccine effectiveness against rubella, using a vaccine with the BRD2 strain which is only used in China, is 89% (RR 0.11, 95% CI 0.03 to 0.42; 1 cohort study; 1621 children; moderate certainty evidence). Vaccine effectiveness against varicella (any severity) after two doses in children aged 11 to 22 months is 95% in a 10 years follow-up (rate ratio (rr) 0.05, 95% CI 0.03 to 0.08; 1 RCT; 2279 children; high certainty evidence). Safety There is evidence supporting an association between aseptic meningitis and MMR vaccines containing Urabe and Leningrad-Zagreb mumps strains, but no evidence supporting this association for MMR vaccines containing Jeryl Lynn mumps strains (rr 1.30, 95% CI 0.66 to 2.56; low certainty evidence). The analyses provide evidence supporting an association between MMR/MMR+V/MMRV vaccines (Jeryl Lynn strain) and febrile seizures. Febrile seizures normally occur in 2% to 4% of healthy children at least once before the age of 5. The attributable risk febrile seizures vaccine-induced is estimated to be from 1 per 1700 to 1 per 1150 administered doses. The analyses provide evidence supporting an association between MMR vaccination and idiopathic thrombocytopaenic purpura (ITP). However, the risk of ITP after vaccination is smaller than after natural infection with these viruses. Natural infection of ITP occur in 5 cases per 100,000 (1 case per 20,000) per year. The attributable risk is estimated about 1 case of ITP per 40,000 administered MMR doses. There is no evidence of an association between MMR immunisation and encephalitis or encephalopathy (rate ratio 0.90, 95% CI 0.50 to 1.61; 2 observational studies; 1,071,088 children; low certainty evidence), and autistic spectrum disorders (rate ratio 0.93, 95% CI 0.85 to 1.01; 2 observational studies; 1,194,764 children; moderate certainty). There is insufficient evidence to determine the association between MMR immunisation and inflammatory bowel disease (odds ratio 1.42, 95% CI 0.93 to 2.16; 3 observational studies; 409 cases and 1416 controls; moderate certainty evidence). Additionally, there is no evidence supporting an association between MMR immunisation and cognitive delay, type 1 diabetes, asthma, dermatitis/eczema, hay fever, leukaemia, multiple sclerosis, gait disturbance, and bacterial or viral infections. AUTHORS' CONCLUSIONS: Existing evidence on the safety and effectiveness of MMR/MMRV vaccines support their use for mass immunisation. Campaigns aimed at global eradication should assess epidemiological and socioeconomic situations of the countries as well as the capacity to achieve high vaccination coverage. More evidence is needed to assess whether the protective effect of MMR/MMRV could wane with time since immunisation.
Collapse
Affiliation(s)
- Carlo Di Pietrantonj
- Servizio Regionale di Riferimento per l'Epidemiologia, SSEpi-SeREMI, Azienda Sanitaria Locale ASL AL, Alessandria, Italy
| | - Alessandro Rivetti
- Dipartimento di Prevenzione - S.Pre.S.A.L, ASL CN2 Alba Bra, Alba, Italy
| | - Pasquale Marchione
- Signal Management Unit, Post-Marketing Surveillance Department, Italian Medicine Agency - AIFA, Rome, Italy
| | | | - Vittorio Demicheli
- Servizio Regionale di Riferimento per l'Epidemiologia, SSEpi-SeREMI, Azienda Sanitaria Locale ASL AL, Alessandria, Italy
| |
Collapse
|
2
|
Lee JM, Hauskrecht M. Modeling multivariate clinical event time-series with recurrent temporal mechanisms. Artif Intell Med 2021; 112:102021. [PMID: 33581828 PMCID: PMC7943294 DOI: 10.1016/j.artmed.2021.102021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 12/26/2020] [Accepted: 01/10/2021] [Indexed: 12/18/2022]
Abstract
In this work, we propose a novel autoregressive event time-series model that can predict future occurrences of multivariate clinical events. Our model represents multivariate event time-series using different temporal mechanisms aimed to fit different temporal characteristics of the time-series. In particular, information about distant past is modeled through the hidden state space defined by an LSTM-based model, information on recently observed clinical events is modeled through discriminative projections, and information about periodic (repeated) events is modeled using a special recurrent mechanism based on probability distributions of inter-event gaps compiled from past data. We evaluate our proposed model on electronic health record (EHRs) data derived from MIMIC-III dataset. We show that our new model equipped with the above temporal mechanisms leads to improved prediction performance compared to multiple baselines.
Collapse
Affiliation(s)
- Jeong Min Lee
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Milos Hauskrecht
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
3
|
Di Pietrantonj C, Rivetti A, Marchione P, Debalini MG, Demicheli V. Vaccines for measles, mumps, rubella, and varicella in children. Cochrane Database Syst Rev 2020; 4:CD004407. [PMID: 32309885 PMCID: PMC7169657 DOI: 10.1002/14651858.cd004407.pub4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Measles, mumps, rubella, and varicella (chickenpox) are serious diseases that can lead to serious complications, disability, and death. However, public debate over the safety of the trivalent MMR vaccine and the resultant drop in vaccination coverage in several countries persists, despite its almost universal use and accepted effectiveness. This is an update of a review published in 2005 and updated in 2012. OBJECTIVES To assess the effectiveness, safety, and long- and short-term adverse effects associated with the trivalent vaccine, containing measles, rubella, mumps strains (MMR), or concurrent administration of MMR vaccine and varicella vaccine (MMR+V), or tetravalent vaccine containing measles, rubella, mumps, and varicella strains (MMRV), given to children aged up to 15 years. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2019, Issue 5), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE (1966 to 2 May 2019), Embase (1974 to 2 May 2019), the WHO International Clinical Trials Registry Platform (2 May 2019), and ClinicalTrials.gov (2 May 2019). SELECTION CRITERIA We included randomised controlled trials (RCTs), controlled clinical trials (CCTs), prospective and retrospective cohort studies (PCS/RCS), case-control studies (CCS), interrupted time-series (ITS) studies, case cross-over (CCO) studies, case-only ecological method (COEM) studies, self-controlled case series (SCCS) studies, person-time cohort (PTC) studies, and case-coverage design/screening methods (CCD/SM) studies, assessing any combined MMR or MMRV / MMR+V vaccine given in any dose, preparation or time schedule compared with no intervention or placebo, on healthy children up to 15 years of age. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the methodological quality of the included studies. We grouped studies for quantitative analysis according to study design, vaccine type (MMR, MMRV, MMR+V), virus strain, and study settings. Outcomes of interest were cases of measles, mumps, rubella, and varicella, and harms. Certainty of evidence of was rated using GRADE. MAIN RESULTS We included 138 studies (23,480,668 participants). Fifty-one studies (10,248,159 children) assessed vaccine effectiveness and 87 studies (13,232,509 children) assessed the association between vaccines and a variety of harms. We included 74 new studies to this 2019 version of the review. Effectiveness Vaccine effectiveness in preventing measles was 95% after one dose (relative risk (RR) 0.05, 95% CI 0.02 to 0.13; 7 cohort studies; 12,039 children; moderate certainty evidence) and 96% after two doses (RR 0.04, 95% CI 0.01 to 0.28; 5 cohort studies; 21,604 children; moderate certainty evidence). The effectiveness in preventing cases among household contacts or preventing transmission to others the children were in contact with after one dose was 81% (RR 0.19, 95% CI 0.04 to 0.89; 3 cohort studies; 151 children; low certainty evidence), after two doses 85% (RR 0.15, 95% CI 0.03 to 0.75; 3 cohort studies; 378 children; low certainty evidence), and after three doses was 96% (RR 0.04, 95% CI 0.01 to 0.23; 2 cohort studies; 151 children; low certainty evidence). The effectiveness (at least one dose) in preventing measles after exposure (post-exposure prophylaxis) was 74% (RR 0.26, 95% CI 0.14 to 0.50; 2 cohort studies; 283 children; low certainty evidence). The effectiveness of Jeryl Lynn containing MMR vaccine in preventing mumps was 72% after one dose (RR 0.24, 95% CI 0.08 to 0.76; 6 cohort studies; 9915 children; moderate certainty evidence), 86% after two doses (RR 0.12, 95% CI 0.04 to 0.35; 5 cohort studies; 7792 children; moderate certainty evidence). Effectiveness in preventing cases among household contacts was 74% (RR 0.26, 95% CI 0.13 to 0.49; 3 cohort studies; 1036 children; moderate certainty evidence). Vaccine effectiveness against rubella is 89% (RR 0.11, 95% CI 0.03 to 0.42; 1 cohort study; 1621 children; moderate certainty evidence). Vaccine effectiveness against varicella (any severity) after two doses in children aged 11 to 22 months is 95% in a 10 years follow-up (rate ratio (rr) 0.05, 95% CI 0.03 to 0.08; 1 RCT; 2279 children; high certainty evidence). Safety There is evidence supporting an association between aseptic meningitis and MMR vaccines containing Urabe and Leningrad-Zagreb mumps strains, but no evidence supporting this association for MMR vaccines containing Jeryl Lynn mumps strains (rr 1.30, 95% CI 0.66 to 2.56; low certainty evidence). The analyses provide evidence supporting an association between MMR/MMR+V/MMRV vaccines (Jeryl Lynn strain) and febrile seizures. Febrile seizures normally occur in 2% to 4% of healthy children at least once before the age of 5. The attributable risk febrile seizures vaccine-induced is estimated to be from 1 per 1700 to 1 per 1150 administered doses. The analyses provide evidence supporting an association between MMR vaccination and idiopathic thrombocytopaenic purpura (ITP). However, the risk of ITP after vaccination is smaller than after natural infection with these viruses. Natural infection of ITP occur in 5 cases per 100,000 (1 case per 20,000) per year. The attributable risk is estimated about 1 case of ITP per 40,000 administered MMR doses. There is no evidence of an association between MMR immunisation and encephalitis or encephalopathy (rate ratio 0.90, 95% CI 0.50 to 1.61; 2 observational studies; 1,071,088 children; low certainty evidence), and autistic spectrum disorders (rate ratio 0.93, 95% CI 0.85 to 1.01; 2 observational studies; 1,194,764 children; moderate certainty). There is insufficient evidence to determine the association between MMR immunisation and inflammatory bowel disease (odds ratio 1.42, 95% CI 0.93 to 2.16; 3 observational studies; 409 cases and 1416 controls; moderate certainty evidence). Additionally, there is no evidence supporting an association between MMR immunisation and cognitive delay, type 1 diabetes, asthma, dermatitis/eczema, hay fever, leukaemia, multiple sclerosis, gait disturbance, and bacterial or viral infections. AUTHORS' CONCLUSIONS Existing evidence on the safety and effectiveness of MMR/MMRV vaccines support their use for mass immunisation. Campaigns aimed at global eradication should assess epidemiological and socioeconomic situations of the countries as well as the capacity to achieve high vaccination coverage. More evidence is needed to assess whether the protective effect of MMR/MMRV could wane with time since immunisation.
Collapse
Affiliation(s)
- Carlo Di Pietrantonj
- Azienda Sanitaria Locale ASL AL, Servizio Regionale di Riferimento per l'Epidemiologia, SSEpi-SeREMI, Via Venezia 6, Alessandria, Italy, 15121
| | - Alessandro Rivetti
- ASL CN2 Alba Bra, Dipartimento di Prevenzione - S.Pre.S.A.L, Via Vida 10, Alba, Piemonte, Italy, 12051
| | - Pasquale Marchione
- Italian Medicine Agency - AIFA, Signal Management Unit, Post-Marketing Surveillance Department, Via del Tritone 181, Rome, Italy, 00187
| | | | - Vittorio Demicheli
- Azienda Sanitaria Locale ASL AL, Servizio Regionale di Riferimento per l'Epidemiologia, SSEpi-SeREMI, Via Venezia 6, Alessandria, Italy, 15121
| |
Collapse
|
4
|
Derrough T, Olsson K, Gianfredi V, Simondon F, Heijbel H, Danielsson N, Kramarz P, Pastore-Celentano L. Immunisation Information Systems - useful tools for monitoring vaccination programmes in EU/EEA countries, 2016. ACTA ACUST UNITED AC 2017; 22:30519. [PMID: 28488999 PMCID: PMC5434883 DOI: 10.2807/1560-7917.es.2017.22.17.30519] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/02/2017] [Indexed: 01/08/2023]
Abstract
Immunisation Information Systems (IIS) are computerised confidential population based-systems containing individual-level information on vaccines received in a given area. They benefit individuals directly by ensuring vaccination according to the schedule and they provide information to vaccine providers and public health authorities responsible for the delivery and monitoring of an immunisation programme. In 2016, the European Centre for Disease Prevention and Control (ECDC) conducted a survey on the level of implementation and functionalities of IIS in 30 European Union/European Economic Area (EU/EEA) countries. It explored the governance and financial support for the systems, IIS software, system characteristics in terms of population, identification of immunisation recipients, vaccinations received, and integration with other health record systems, the use of the systems for surveillance and programme management as well as the challenges involved with implementation. The survey was answered by 27 of the 30 EU/EEA countries having either a system in production at national or subnational levels (n = 16), or being piloted (n = 5) or with plans for setting up a system in the future (n = 6). The results demonstrate the added-value of IIS in a number of areas of vaccination programme monitoring such as monitoring vaccine coverage at local geographical levels, linking individual immunisation history with health outcome data for safety investigations, monitoring vaccine effectiveness and failures and as an educational tool for both vaccine providers and vaccine recipients. IIS represent a significant way forward for life-long vaccination programme monitoring.
Collapse
Affiliation(s)
- Tarik Derrough
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Kate Olsson
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Vincenza Gianfredi
- School of Specialization in Hygiene and Preventive Medicine, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Francois Simondon
- Mother and Child Health research unit 216, IRD & Paris Descartes University, France
| | - Harald Heijbel
- Ret. Swedish Institute for Infectious Disease Control (SMI), Stockholm, Sweden
| | - Niklas Danielsson
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Piotr Kramarz
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | |
Collapse
|
5
|
Maro JC, Nguyen MD, Dashevsky I, Baker MA, Kulldorff M. Statistical Power for Postlicensure Medical Product Safety Data Mining. EGEMS (WASHINGTON, DC) 2017; 5:6. [PMID: 29881732 PMCID: PMC5982804 DOI: 10.5334/egems.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To perform sample size calculations when using tree-based scan statistics in longitudinal observational databases. METHODS Tree-based scan statistics enable data mining on epidemiologic datasets where thousands of disease outcomes are organized into hierarchical tree structures with automatic adjustment for multiple testing. We show how to evaluate the statistical power of the unconditional and conditional Poisson versions. The null hypothesis is that there is no increase in the risk for any of the outcomes. The alternative is that one or more outcomes have an excess risk. We varied the excess risk, total sample size, frequency of the underlying event rate, and the level of across-the-board health care utilization. We also quantified the reduction in statistical power resulting from specifying a risk window that was too long or too short. RESULTS For 500,000 exposed people, we had at least 98 percent power to detect an excess risk of 1 event per 10,000 exposed for all outcomes. In the presence of potential temporal confounding due to across-the-board elevations of health care utilization in the risk window, the conditional tree-based scan statistic controlled type I error well, while the unconditional version did not. DISCUSSION Data mining analyses using tree-based scan statistics expand the pharmacovigilance toolbox, ensuring adequate monitoring of thousands of outcomes of interest while controlling for multiple hypothesis testing. These power evaluations enable investigators to design and optimize implementation of retrospective data mining analyses.
Collapse
Affiliation(s)
- Judith C Maro
- Harvard Medical School
- Harvard Pilgrim Health Care Institute
| | | | - Inna Dashevsky
- Harvard Medical School
- Harvard Pilgrim Health Care Institute
| | - Meghan A Baker
- Harvard Medical School
- Harvard Pilgrim Health Care Institute
| | | |
Collapse
|
6
|
Vaccinations and risk of systemic lupus erythematosus and rheumatoid arthritis: A systematic review and meta-analysis. Autoimmun Rev 2017; 16:756-765. [PMID: 28483543 DOI: 10.1016/j.autrev.2017.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND In the past several years, more and more studies proposed some concerns on the possibly increased risk of autoimmune diseases in individuals receiving vaccinations, but published studies on the associations of vaccinations with risks of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) reported conflicting findings. A systematic review and meta-analysis was carried out to comprehensively evaluate the relationship between vaccinations and risk of SLE and RA. METHODS Pubmed, Web of Science and Embase were searched for observational studies assessing the associations of vaccinations with risks of RA and SLE. Two authors independently extracted data from those eligible studies. The quality of eligible studies was assessed by using the Newcastle-Ottawa Scale (NOS). The pooled relative risk (RR) with 95% confidence intervals (CIs) was used to measure the risk of RA and SLE associated with vaccinations, and was calculated through random-effect meta-analysis. RESULTS Sixteen observational studies were finally considered eligible, including 12 studies on the association between vaccinations and SLE risk and 13 studies on the association between vaccinations and RA risk. The pooled findings suggested that vaccinations significantly increased risk of SLE (RR=1.50; 95%CI 1.05-2.12, P=0.02). In addition, there was an obvious association between vaccinations and increased risk of RA (RR=1.32; 95%CI 1.09-1.60, P=0.004). Meta-analysis of studies reporting outcomes of short vaccinated time also suggested that vaccinations could significantly increase risk of SLE (RR=1.93; 95%CI 1.07-3.48, P=0.028) and RA (RR=1.48; 95%CI 1.08-2.03, P=0.015). Sensitivity analyses in studies with low risk of bias also found obvious associations of vaccinations with increased risk of RA and SLE. CONCLUSION This study suggests that vaccinations are related to increased risks of SLE and RA. More and larger observational studies are needed to further verify the findings above and to assess the associations of vaccinations with other rheumatic diseases.
Collapse
|
7
|
Girardeau Y, Trivin C, Durieux P, Le Beller C, Louet Agnes LL, Neuraz A, Degoulet P, Avillach P. Detection of Drug-Drug Interactions Inducing Acute Kidney Injury by Electronic Health Records Mining. Drug Saf 2016; 38:799-809. [PMID: 26093687 DOI: 10.1007/s40264-015-0311-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE While risk of acute kidney injury (AKI) is a well documented adverse effect of some drugs, few studies have assessed the relationship between drug-drug interactions (DDIs) and AKI. Our objective was to develop an algorithm capable of detecting potential signals on this relationship by retrospectively mining data from electronic health records. MATERIAL AND METHODS Data were extracted from the clinical data warehouse (CDW) of the Hôpital Européen Georges Pompidou (HEGP). AKI was defined as the first level of the RIFLE criteria, that is, an increase ≥50 % of creatinine basis. Algorithm accuracy was tested on 20 single drugs, 10 nephrotoxic and 10 non-nephrotoxic. We then tested 45 pairs of non-nephrotoxic drugs, among the most prescribed at our hospital and representing distinct pharmacological classes for DDIs. RESULTS Sensitivity and specificity were 50 % [95 % confidence interval (CI) 23.66-76.34] and 90 % (95 % CI 59.58-98.21), respectively, for single drugs. Our algorithm confirmed a previously identified signal concerning clarithromycin and calcium-channel blockers (unadjusted odds ratio (ORu) 2.92; 95 % CI 1.11-7.69, p = 0.04). Among the 45 drug pairs investigated, we identified a signal concerning 55 patients in association with bromazepam and hydroxyzine (ORu 1.66; 95 % CI 1.23-2.23). This signal was not confirmed after a chart review. Even so, AKI and co-prescription were confirmed for 96 % (95 % CI 88-99) and 88 % (95 % CI 76-94) of these patients, respectively. CONCLUSION Data mining techniques on CDW can foster the detection of adverse drug reactions when drugs are used alone or in combination.
Collapse
Affiliation(s)
- Yannick Girardeau
- Biomedical Informatics and Public Health Department, HEGP, AP-HP, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nelson JC, Shortreed SM, Yu O, Peterson D, Baxter R, Fireman B, Lewis N, McClure D, Weintraub E, Xu S, Jackson LA. Integrating database knowledge and epidemiological design to improve the implementation of data mining methods that evaluate vaccine safety in large healthcare databases. Stat Anal Data Min 2014. [DOI: 10.1002/sam.11232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jennifer C. Nelson
- Biostatistics Unit, Group Health Research Institute; Seattle WA 98101 USA
- Department of Biostatistics; University of Washington; Seattle WA 98195 USA
| | - Susan M. Shortreed
- Biostatistics Unit, Group Health Research Institute; Seattle WA 98101 USA
- Department of Biostatistics; University of Washington; Seattle WA 98195 USA
| | - Onchee Yu
- Biostatistics Unit, Group Health Research Institute; Seattle WA 98101 USA
| | - Do Peterson
- Biostatistics Unit, Group Health Research Institute; Seattle WA 98101 USA
| | - Roger Baxter
- Vaccine Study Center and Division of Research, Northern California Kaiser Permanente; Oakland CA 94612 USA
| | - Bruce Fireman
- Vaccine Study Center and Division of Research, Northern California Kaiser Permanente; Oakland CA 94612 USA
| | - Ned Lewis
- Vaccine Study Center and Division of Research, Northern California Kaiser Permanente; Oakland CA 94612 USA
| | - Dave McClure
- Epidemiology Research Center, Marshfield Clinic Research Foundation; Marshfield WI 54449 USA
| | - Eric Weintraub
- Centers for Disease Control and Prevention; Atlanta GA 30333 USA
| | - Stan Xu
- Kaiser Permanente Institute for Health Research; Denver CO 80231 USA
| | - Lisa A. Jackson
- Biostatistics Unit, Group Health Research Institute; Seattle WA 98101 USA
- Department of Epidemiology; University of Washington; Seattle WA 98195 USA
| | | |
Collapse
|
9
|
Demicheli V, Rivetti A, Debalini MG, Di Pietrantonj C. Vaccines for measles, mumps and rubella in children. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/ebch.1948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Coloma PM, Trifirò G, Patadia V, Sturkenboom M. Postmarketing safety surveillance : where does signal detection using electronic healthcare records fit into the big picture? Drug Saf 2013; 36:183-97. [PMID: 23377696 DOI: 10.1007/s40264-013-0018-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The safety profile of a drug evolves over its lifetime on the market; there are bound to be changes in the circumstances of a drug's clinical use which may give rise to previously unobserved adverse effects, hence necessitating surveillance postmarketing. Postmarketing surveillance has traditionally been carried out by systematic manual review of spontaneous reports of adverse drug reactions. Vast improvements in computing capabilities have provided opportunities to automate signal detection, and several worldwide initiatives are exploring new approaches to facilitate earlier detection, primarily through mining of routinely-collected data from electronic healthcare records (EHR). This paper provides an overview of ongoing initiatives exploring data from EHR for signal detection vis-à-vis established spontaneous reporting systems (SRS). We describe the role SRS has played in regulatory decision making with respect to safety issues, and evaluate the potential added value of EHR-based signal detection systems to the current practice of drug surveillance. Safety signal detection is both an iterative and dynamic process. It is in the best interest of public health to integrate and understand evidence from all possibly relevant information sources on drug safety. Proper evaluation and communication of potential signals identified remains an imperative and should accompany any signal detection activity.
Collapse
Affiliation(s)
- Preciosa M Coloma
- Ee-2116, Department of Medical Informatics, Erasmus Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
11
|
Clothier HJ, Lee KJ, Sundararajan V, Buttery JP, Crawford NW. Human papillomavirus vaccine in boys: background rates of potential adverse events. Med J Aust 2013; 198:554-8. [DOI: 10.5694/mja12.11751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/10/2013] [Indexed: 11/17/2022]
Affiliation(s)
- Hazel J Clothier
- Surveillance of Adverse Events Following Vaccination in the Community (SAEFVIC), Murdoch Childrens Research Institute, Melbourne, VIC
- School of Population and Global Health, University of Melbourne, Melbourne, VIC
| | - Katherine J Lee
- Clinical Epidemiology and Biostatistics Unit, Murdoch Childrens Research Institute, Melbourne, VIC
| | | | - Jim P Buttery
- Surveillance of Adverse Events Following Vaccination in the Community (SAEFVIC), Murdoch Childrens Research Institute, Melbourne, VIC
- Department of Infectious Diseases and Department of Paediatrics, Monash University, Melbourne, VIC
| | - Nigel W Crawford
- Surveillance of Adverse Events Following Vaccination in the Community (SAEFVIC), Murdoch Childrens Research Institute, Melbourne, VIC
- Department of General Medicine, Royal Children's Hospital, Melbourne, VIC
| |
Collapse
|
12
|
Rasmussen TA, Jørgensen MRS, Bjerrum S, Jensen-Fangel S, Støvring H, Østergaard L, Søgaard OS. Use of population based background rates of disease to assess vaccine safety in childhood and mass immunisation in Denmark: nationwide population based cohort study. BMJ 2012; 345:e5823. [PMID: 22988304 PMCID: PMC3444137 DOI: 10.1136/bmj.e5823] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To predict the number of selected outcomes temporally associated but not caused by vaccination, to aid causality assessment of adverse events arising after mass immunisation in a paediatric population. DESIGN Nationwide population based cohort study. SETTING Denmark. PARTICIPANTS All liveborn infants delivered after 1 January 1980. Study population was followed from date of birth until hospital admission for selected outcome diagnoses, death, first emigration, age 18 years, or 31 December 2009. The study population was subject to vaccines used in standard childhood immunisation in Denmark, with 82-93% vaccine coverage. MAIN OUTCOME MEASURES Incidence of acute infectious and post-infectious polyneuritis (Guillain-Barré syndrome), acute transverse myelitis, optic polyneuritis, facial nerve palsy, anaphylactic shock, seizure, multiple sclerosis, autoimmune thrombocytopenia, type 1 diabetes mellitus, juvenile and rheumatoid arthritis, narcolepsy, and death of unknown cause stratified by sex, age, and season. We predicted the number of events for a hypothetical vaccine cohort of 1,000,000 people for follow-up periods of up to 182 days. RESULTS The study included 2,300,227 liveborn infants, yielding 37,262,404 person years of follow-up; median follow-up was 16.8 person years. Incidence of outcome diagnoses spanned from 0.32 per 100,000 patient years for autoimmune thrombocytopenia to 189.82 per 100,000 patient years for seizure. Seasonal differences were most pronounced for anaphylactic shock, seizure, and multiple sclerosis. Even for rare outcomes, numerous events were predicted in the hypothetical vaccine cohort. We predicted that 20 cases of type 1 diabetes mellitus, 19 of juvenile or rheumatoid arthritis, eight of facial nerve palsy, and five of multiple sclerosis per 1,000,000 children would occur within 42 days after vaccination. CONCLUSIONS Incorporating exact background rates of disease based on age, sex, and seasonal distribution could strengthen vaccine safety assessment, and provides an evidence based focus for discussing the incremental risk of newly introduced vaccines.
Collapse
Affiliation(s)
- Thomas A Rasmussen
- Department of Infectious Diseases, Aarhus University Hospital, DK-8200 Aarhus N, Denmark.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND Mumps, measles and rubella (MMR) are serious diseases that can lead to potentially fatal illness, disability and death. However, public debate over the safety of the trivalent MMR vaccine and the resultant drop in vaccination coverage in several countries persists, despite its almost universal use and accepted effectiveness. OBJECTIVES To assess the effectiveness and adverse effects associated with the MMR vaccine in children up to 15 years of age. SEARCH METHODS For this update we searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register, PubMed (July 2004 to May week 2, 2011) and Embase.com (July 2004 to May 2011). SELECTION CRITERIA We used comparative prospective or retrospective trials assessing the effects of the MMR vaccine compared to placebo, do nothing or a combination of measles, mumps and rubella antigens on healthy individuals up to 15 years of age. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed methodological quality of the included studies. One review author arbitrated in case of disagreement. MAIN RESULTS We included five randomised controlled trials (RCTs), one controlled clinical trial (CCT), 27 cohort studies, 17 case-control studies, five time-series trials, one case cross-over trial, two ecological studies, six self controlled case series studies involving in all about 14,700,000 children and assessing effectiveness and safety of MMR vaccine. Based on the available evidence, one MMR vaccine dose is at least 95% effective in preventing clinical measles and 92% effective in preventing secondary cases among household contacts.Effectiveness of at least one dose of MMR in preventing clinical mumps in children is estimated to be between 69% and 81% for the vaccine prepared with Jeryl Lynn mumps strain and between 70% and 75% for the vaccine containing the Urabe strain. Vaccination with MMR containing the Urabe strain has demonstrated to be 73% effective in preventing secondary mumps cases. Effectiveness of Jeryl Lynn containing MMR in preventing laboratory-confirmed mumps cases in children and adolescents was estimated to be between 64% to 66% for one dose and 83% to 88% for two vaccine doses. We did not identify any studies assessing the effectiveness of MMR in preventing rubella.The highest risk of association with aseptic meningitis was observed within the third week after immunisation with Urabe-containing MMR (risk ratio (RR) 14.28; 95% confidence interval (CI) from 7.93 to 25.71) and within the third (RR 22.5; 95% CI 11.8 to 42.9) or fifth (RR 15.6; 95% CI 10.3 to 24.2) weeks after immunisation with the vaccine prepared with the Leningrad-Zagreb strain. A significant risk of association with febrile seizures and MMR exposure during the two previous weeks (RR 1.10; 95% CI 1.05 to 1.15) was assessed in one large person-time cohort study involving 537,171 children aged between three months and five year of age. Increased risk of febrile seizure has also been observed in children aged between 12 to 23 months (relative incidence (RI) 4.09; 95% CI 3.1 to 5.33) and children aged 12 to 35 months (RI 5.68; 95% CI 2.31 to 13.97) within six to 11 days after exposure to MMR vaccine. An increased risk of thrombocytopenic purpura within six weeks after MMR immunisation in children aged 12 to 23 months was assessed in one case-control study (RR 6.3; 95% CI 1.3 to 30.1) and in one small self controlled case series (incidence rate ratio (IRR) 5.38; 95% CI 2.72 to 10.62). Increased risk of thrombocytopenic purpura within six weeks after MMR exposure was also assessed in one other case-control study involving 2311 children and adolescents between one month and 18 years (odds ratio (OR) 2.4; 95% CI 1.2 to 4.7). Exposure to the MMR vaccine was unlikely to be associated with autism, asthma, leukaemia, hay fever, type 1 diabetes, gait disturbance, Crohn's disease, demyelinating diseases, bacterial or viral infections. AUTHORS' CONCLUSIONS The design and reporting of safety outcomes in MMR vaccine studies, both pre- and post-marketing, are largely inadequate. The evidence of adverse events following immunisation with the MMR vaccine cannot be separated from its role in preventing the target diseases.
Collapse
Affiliation(s)
- Vittorio Demicheli
- Servizio Regionale di Riferimento per l’Epidemiologia, SSEpi-SeREMI - Cochrane Vaccines Field, Azienda Sanitaria Locale ASL AL,Alessandria, Italy.
| | | | | | | |
Collapse
|
14
|
Norén GN, Hopstadius J, Bate A, Edwards IR. Safety surveillance of longitudinal databases: methodological considerations. Pharmacoepidemiol Drug Saf 2011; 20:714-7. [PMID: 21638520 DOI: 10.1002/pds.2151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/10/2011] [Accepted: 03/23/2011] [Indexed: 11/10/2022]
Affiliation(s)
- G Niklas Norén
- Uppsala Monitoring Centre, WHO Collaborating Centre for International Drug Monitoring, Uppsala, Sweden.
| | | | | | | |
Collapse
|
15
|
Journal Watch. Pharmaceut Med 2010. [DOI: 10.1007/bf03256839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|