1
|
Saha D, Gregor JB, Hoda S, Eastman KE, Gutierrez-Schultz VA, Navarrete M, Wisecaver JH, Briggs SD. Candida glabrata maintains two HAP1 ohnologs, HAP1A and HAP1B, for distinct roles in ergosterol gene regulation to mediate sterol homeostasis under azole and hypoxic conditions. mSphere 2024:e0052424. [PMID: 39440948 DOI: 10.1128/msphere.00524-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
Candida glabrata exhibits innate resistance to azole antifungal drugs but also has the propensity to rapidly develop clinical drug resistance. Azole drugs, which target Erg11, is one of the major classes of antifungals used to treat Candida infections. Despite their widespread use, the mechanism controlling azole-induced ERG gene expression and drug resistance in C. glabrata has primarily revolved around Upc2 and/or Pdr1. Phylogenetic and syntenic analyses revealed that C. glabrata, following a whole genome duplication event, maintained HAP1A and HAP1B, whereas Saccharomyces cerevisiae only retained the HAP1A ortholog, HAP1. In this study, we determined the function of two zinc cluster transcription factors, Hap1A and Hap1B, as direct regulators of ERG genes. In S. cerevisiae, Hap1, an ortholog of Hap1A, is a known transcription factor controlling ERG gene expression under aerobic and hypoxic conditions. Interestingly, deleting HAP1 or HAP1B in either S. cerevisiae or C. glabrata, respectively, showed altered susceptibility to azoles. In contrast, the strain deleted for HAP1A did not exhibit azole susceptibility. We also determined that the increased azole susceptibility in a hap1BΔ strain is attributed to decreased azole-induced expression of ERG genes, resulting in decreased levels of total ergosterol. Surprisingly, Hap1A protein expression is barely detected under aerobic conditions but is specifically induced under hypoxic conditions, where Hap1A is required for the repression of ERG genes. However, in the absence of Hap1A, Hap1B can compensate as a transcriptional repressor. Our study shows that Hap1A and Hap1B is utilized by C. glabrata to adapt to specific host and environmental conditions. IMPORTANCE Invasive and drug-resistant fungal infections pose a significant public health concern. Candida glabrata, a human fungal pathogen, is often difficult to treat due to its intrinsic resistance to azole antifungal drugs and its capacity to develop clinical drug resistance. Therefore, understanding the pathways that facilitate fungal growth and environmental adaptation may lead to novel drug targets and/or more efficacious antifungal therapies. While the mechanisms of azole resistance in Candida species have been extensively studied, the roles of zinc cluster transcription factors, such as Hap1A and Hap1B, in C. glabrata have remained largely unexplored until now. Our research shows that these factors play distinct yet crucial roles in regulating ergosterol homeostasis under azole drug treatment and oxygen-limiting growth conditions. These findings offer new insights into how this pathogen adapts to different environmental conditions and enhances our understanding of factors that alter drug susceptibility and/or resistance.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Justin B Gregor
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Smriti Hoda
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | | | - Mindy Navarrete
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Scott D Briggs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Elsawalhy M, Abdel-Rahman AAH, Basiony EA, Ellithy SA, Hassan AA, Abou-Amra ES, Ismail A, Almehizia AA, Al-Omar MA, Naglah AM, Hassan NA. Novel Dual Acetyl- and Butyrylcholinesterase Inhibitors Based on the Pyridyl-Pyridazine Moiety for the Potential Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:1407. [PMID: 39459045 PMCID: PMC11510214 DOI: 10.3390/ph17101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Alzheimer's disease (AD) is characterized by cholinergic dysfunction, making the inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) critical for improving cholinergic neurotransmission. However, the development of effective dual inhibitors remains challenging. Objective: This study aims to synthesize and evaluate novel pyridazine-containing compounds as potential dual inhibitors of AChE and BuChE for AD treatment. Methods: Ten novel pyridazine-containing compounds were synthesized and characterized using IR, 1H NMR, and 13C NMR. The inhibitory activities against AChE and BuChE were assessed in vitro, and pharmacokinetic properties were explored through in silico ADME studies. Molecular dynamics simulations were performed for the most active compound. Results: Compound 5 was the most potent inhibitor, with IC50 values of 0.26 µM for AChE and 0.19 µM for BuChE, outperforming rivastigmine and tacrine, and showing competitive results with donepezil. Docking studies revealed a binding affinity of -10.21 kcal/mol to AChE and -13.84 kcal/mol to BuChE, with stable interactions confirmed by molecular dynamics simulations. In silico ADME studies identified favorable pharmacokinetic properties for compounds 5, 8, and 9, with Compound 5 showing the best activity. Conclusions: Compound 5 demonstrates strong potential as a dual cholinesterase inhibitor for Alzheimer's disease, supported by both in vitro and in silico analyses. These findings provide a basis for further optimization and development of these novel inhibitors.
Collapse
Affiliation(s)
- Mohamed Elsawalhy
- Department of Chemistry, Faculty of Science, Menofia University, Shbien El-Kom 32511, Egypt; (M.E.); (A.A.-H.A.-R.); (E.A.B.); (S.A.E.); (A.I.)
| | - Adel A-H Abdel-Rahman
- Department of Chemistry, Faculty of Science, Menofia University, Shbien El-Kom 32511, Egypt; (M.E.); (A.A.-H.A.-R.); (E.A.B.); (S.A.E.); (A.I.)
| | - Ebtesam A. Basiony
- Department of Chemistry, Faculty of Science, Menofia University, Shbien El-Kom 32511, Egypt; (M.E.); (A.A.-H.A.-R.); (E.A.B.); (S.A.E.); (A.I.)
| | - Salma A. Ellithy
- Department of Chemistry, Faculty of Science, Menofia University, Shbien El-Kom 32511, Egypt; (M.E.); (A.A.-H.A.-R.); (E.A.B.); (S.A.E.); (A.I.)
| | - Allam A. Hassan
- Department of Chemistry, Faculty of Science, Suez University, Suez 43221, Egypt;
| | - Eman S. Abou-Amra
- Department of Chemistry, Organic Chemistry, Faculty of Science (Girls), Al-Azhar University, Cairo 11754, Egypt;
| | - Abdelhamid Ismail
- Department of Chemistry, Faculty of Science, Menofia University, Shbien El-Kom 32511, Egypt; (M.E.); (A.A.-H.A.-R.); (E.A.B.); (S.A.E.); (A.I.)
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.A.A.-O.); (A.M.N.)
| | - Mohamed A. Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.A.A.-O.); (A.M.N.)
| | - Ahmed M. Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.A.A.-O.); (A.M.N.)
| | - Nasser A. Hassan
- Synthetic Unit, Department of Photochemistry, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
3
|
Hamada Y, Yagi Y. Therapeutic drug monitoring of azole antifungal agents. J Infect Chemother 2024:S1341-321X(24)00276-9. [PMID: 39374735 DOI: 10.1016/j.jiac.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Deep-seated mycoses are generally opportunistic infections that are difficult to diagnose and treat. They are expected to increase with the spread of advanced medical care and aging populations, thus highlighting the need for safe, effective, and rapid drug-based treatments. Depending on a patient's age, sex, underlying diseases, and immune system status, therapeutic drug monitoring (TDM) may be important for assessing variable pharmacokinetic parameters, as well as preventing drug-drug interactions, adverse events, and breakthrough infections caused by fungal resistance. Azole antifungal agents play an important role in the prevention and treatment of deep-seated fungal infections, with each azoles having its own unique pharmacokinetic properties and specific adverse events. Therefore, it is necessary to use national and international guidelines to build evidence for the expansion of TDM indications. This review focuses on the clinical utility and future perspectives of TDM using azole antifungal agents, in the context of recent evidence in the literature.
Collapse
Affiliation(s)
- Yukihiro Hamada
- Department of Pharmacy, Kochi Medical School Hospital, Nankoku, Kochi, Japan.
| | - Yusuke Yagi
- Department of Pharmacy, Kochi Medical School Hospital, Nankoku, Kochi, Japan; Department of Infection Prevention and Control, Kochi Medical School Hospital, Nankoku, Kochi, Japan
| |
Collapse
|
4
|
Yang G, Shi W, He W, Wu J, Huang S, Mo L, Zhang J, Wang H, Zhou X. The mitochondrial protein Bcs1A regulates antifungal drug tolerance by affecting efflux pump expression in the filamentous pathogenic fungus Aspergillus fumigatus. Microbiol Spectr 2024; 12:e0117224. [PMID: 39162512 PMCID: PMC11448404 DOI: 10.1128/spectrum.01172-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 08/21/2024] Open
Abstract
Aspergillus fumigatus is the predominant pathogen responsible for aspergillosis infections, with emerging drug-resistant strains complicating treatment strategies. The role of mitochondrial functionality in fungal resistance to antifungal agents is well-documented yet not fully understood. In this study, the mitochondrial protein Bcs1A, a homolog of yeast Bcs1, was found to regulate colony growth, ion homeostasis, and the response to antifungal drugs in A. fumigatus. Microscopic observations revealed substantial colocalization of Bcs1A-GFP fusion protein fluorescence with mitochondria. Bcs1A deletion compromised colony growth and the utilization of non-fermentable carbon sources, alongside causing abnormal mitochondrial membrane potential and reduced reactive oxygen species production. These findings underscore Bcs1A's vital role in maintaining mitochondrial integrity. Phenotypic analysis and determinations of minimum inhibitory concentrations indicated that the Δbcs1A mutant was more resistant to various antifungal agents, such as azoles, terbinafine, and simvastatin, compared to wild-type strain. RNA sequencing and RT-qPCR analysis highlighted an upregulation of multiple efflux pumps in the Δbcs1A mutant. Furthermore, loss of the principal drug efflux pump, mdr1, decreased azole tolerance in the Δbcs1A mutant, suggesting that Bcs1A's modulated of azoles response via efflux pump expression. Collectively, these results establish Bcs1A as essential for growth and antifungal drug responsiveness in A. fumigatus mediated through mitochondrial regulation.IMPORTANCEDrug resistance presents a formidable obstacle in the clinical management of aspergillosis. Mitochondria are integral to various biochemical pathways, including those involved in fungi drug response, making mitochondrial proteins promising therapeutic targets for drug therapy. This study confirms that Bcs1A, a mitochondrial respiratory chain protein, is indispensable for mitochondrial functionality and multidrug tolerance in Aspergillus fumigatus. Mutation of Bcs1A not only leads to a series of drug efflux pumps upregulated but also shows that loss of the primary efflux pump, mdr1, partial reduction in drug tolerance in the Bcs1A mutant, highlighting that Bcs1A's significant influence on mitochondria-mediated drug resistance.
Collapse
Affiliation(s)
- Guorong Yang
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Weiwei Shi
- Departments of Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Wenlin He
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Jing Wu
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Sutao Huang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Li Mo
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Huaxue Wang
- Departments of Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xiaogang Zhou
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| |
Collapse
|
5
|
Xia W, Chen S, Yun Y, Cui L, Wang Z, Hou J, Tang M, Bu C, Gao S, Shao R, Tao X. A general and rapid LC-MS/MS method for simultaneous determination of voriconazole, posaconazole, fluconazole, itraconazole and hydroxyitraconazole in IFI patients. J Pharmacol Toxicol Methods 2024; 130:107565. [PMID: 39321943 DOI: 10.1016/j.vascn.2024.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE To establish a rapid and universal quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) method for measuring the exposure levels of five triazole antifungal drugs in human plasma, including voriconazole, fluconazole, posaconazole, itraconazole, and hydroxyitraconazole. METHODS A triple quadrupole mass spectrometer operating in positive ionization mode was used to detect the analyte, and multiple reaction monitoring mode was employed to gather data. The mobile phase included 0.05 % formic acid in water (phase A) and acetonitrile (phase B). The analytes were separated on an Agilent EclipsePlusC18 RRHD column (30 × 50 mm, 1.8 μm) using gradient elution. The flow rate was 0.3 mL/min with the column temperature set at 35 °C. The acetonitrile was used to pretreat the plasma sample, and the itraconazole-D5 and hydroxyitraconazole-D5 were utilized as the internal standards. RESULTS The calibration range was from 100 to 10,000 ng/mL for posaconazole, itraconazole, and hydroxyitraconazole, from 200 to 20,000 ng/mL for fluconazole and from 50 to 5000 ng/mL for voriconazole, with linear correlation coefficients more than 0.99 for all regression curves. The intra- and inter-day accuracy and precision of the method were within ±15 %. The mean extraction recovery of all the analytes ranged from 74.32 % to 117.83 %, and the matrix effect was from 72.54 % to 111.2 %. The results of stability fell into the scope of ±15 % deviation. CONCLUSION This newly developed method is sensitive, simple, and robust, and successfully applied in determining triazole antifungal drugs in plasma from 66 IFI patients to provide reference for safe and effective drug administration in clinical practice.
Collapse
Affiliation(s)
- Wenwen Xia
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming City, Yunnan Province 650500, China; Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Shun Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Yunlei Yun
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Lili Cui
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Juanjuan Hou
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming City, Yunnan Province 650500, China; Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Mao Tang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Chen Bu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Shouhong Gao
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming City, Yunnan Province 650500, China; Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China.
| | - Rongzi Shao
- The 960th Hospital of PLA Joint Logistics Support Force, Jinan 250014, China.
| | - Xia Tao
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming City, Yunnan Province 650500, China; Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China.
| |
Collapse
|
6
|
Deb M, Singh H, Manhas D, Nandi U, Guru SK, Das P. Development of di-arylated 1,2,4-triazole-based derivatives as therapeutic agents against breast cancer: synthesis and biological evaluation. RSC Med Chem 2024; 15:3097-3113. [PMID: 39309354 PMCID: PMC11411613 DOI: 10.1039/d4md00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/20/2024] [Indexed: 09/25/2024] Open
Abstract
The synthesis, anticancer activity, and metabolic stability of di-arylated 1,2,4-triazole molecules have been reported. Utilizing an efficient programmed arylation technique which starts from commercially available 3-bromo-1H-1,2,4-triazole, a series of therapeutic agents have been synthesized and screened against three human breast cancer cell lines, MDA-MB-231, MCF-7, and ZR-75-1, via an in vitro growth inhibition assay. At 10 μM concentration, 4k, 4m, 4q, and 4t have displayed good anticancer potency in the MCF-7 cell line, among which 4q has shown the best efficacy (IC50 = 4.8 μM). Mechanistic investigations of 4q have indicated the elevation of the pro-apoptotic BAX protein in the malignant cells along with mitochondrial outer membrane permeabilization which are hallmarks of apoptosis. Further metabolic stability studies in diverse liver microsomes have provided insights into the favorable pharmacokinetic properties of 4q in humans, establishing it as a promising lead compound of this series that deserves further investigation.
Collapse
Affiliation(s)
- Mousumi Deb
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad-826004 India
| | - Hoshiyar Singh
- Department of Biological Sciences, NIPER-Hyderabad-500037 India
| | - Diksha Manhas
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Jammu-180001 India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Jammu-180001 India
| | - Santosh K Guru
- Department of Biological Sciences, NIPER-Hyderabad-500037 India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad-826004 India
| |
Collapse
|
7
|
El-Emam NA, El-Ashmawy MB, Mohamed AAB, Habib ESE, Thamotharan S, Abdelbaky MSM, Garcia-Granda S, Moustafa MAA. Thiophene-Linked 1,2,4-Triazoles: Synthesis, Structural Insights and Antimicrobial and Chemotherapeutic Profiles. Pharmaceuticals (Basel) 2024; 17:1123. [PMID: 39338288 PMCID: PMC11435084 DOI: 10.3390/ph17091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The reaction of thiophene-2-carbohydrazide 1 or 5-bromothiophene-2-carbohydrazide 2 with various haloaryl isothiocyanates and subsequent cyclization by heating in aqueous sodium hydroxide yielded the corresponding 4-haloaryl-5-(thiophen-2-yl or 5-bromothiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 5a-e. The triazole derivatives 5a and 5b were reacted with different secondary amines and formaldehyde solution to yield the corresponding 2-aminomethyl-4-haloaryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones 6a-e, 7a-e, 8, 9, 10a and 10b in good yields. The in vitro antimicrobial activity of compounds 5a-e, 6a-e, 7a-d, 8, 9, 10a and 10b was evaluated against a panel of standard pathogenic bacterial and fungal strains. Compounds 5a, 5b, 5e, 5f, 6a-e, 7a-d, 8, 9, 10a and 10b showed marked activity, particularly against the tested Gram-positive bacteria and the Gram-negative bacteria Escherichia coli, and all the tested compounds were almost inactive against all the tested fungal strains. In addition, compounds 5e, 6a-e, 7a-d and 10a exhibited potent anti-proliferative activity, particularly against HepG-2 and MCF-7 cancer cell lines (IC50 < 25 μM). A detailed structural insight study based on the single crystals of compounds 5a, 5b, 6a, 6d and 10a is also reported. Molecular docking studies of the highly active antibacterial compounds 5e, 6b, 6d, 7a and 7d showed a high affinity for DNA gyrase. Meanwhile, the potent anti-proliferative activity of compounds 6d, 6e and 7d may be attributed to their high affinity for cyclin-dependent kinase 2 (CDK2).
Collapse
Affiliation(s)
- Nada A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud B El-Ashmawy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A B Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - El-Sayed E Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory and DBT-Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Mohammed S M Abdelbaky
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
| | - Santiago Garcia-Granda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo-CINN (CSIC), 33006 Oviedo, Spain
| | - Mohamed A A Moustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
8
|
Elsaman H, Golubtsov E, Brazil S, Ng N, Klugherz I, Martin R, Dichtl K, Müller C, Wagener J. Toxic eburicol accumulation drives the antifungal activity of azoles against Aspergillus fumigatus. Nat Commun 2024; 15:6312. [PMID: 39060235 PMCID: PMC11282106 DOI: 10.1038/s41467-024-50609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Azole antifungals inhibit the sterol C14-demethylase (CYP51/Erg11) of the ergosterol biosynthesis pathway. Here we show that the azole-induced synthesis of fungicidal cell wall carbohydrate patches in the pathogenic mold Aspergillus fumigatus strictly correlates with the accumulation of the CYP51 substrate eburicol. A lack of other essential ergosterol biosynthesis enzymes, such as sterol C24-methyltransferase (Erg6A), squalene synthase (Erg9) or squalene epoxidase (Erg1) does not trigger comparable cell wall alterations. Partial repression of Erg6A, which converts lanosterol into eburicol, increases azole resistance. The sterol C5-desaturase (ERG3)-dependent conversion of eburicol into 14-methylergosta-8,24(28)-dien-3β,6α-diol, the "toxic diol" responsible for the fungistatic activity against yeasts, is not required for the fungicidal effects in A. fumigatus. While ERG3-lacking yeasts are azole resistant, ERG3-lacking A. fumigatus becomes more susceptible. Mutants lacking mitochondrial complex III functionality, which are much less effectively killed, but strongly inhibited in growth by azoles, convert eburicol more efficiently into the supposedly "toxic diol". We propose that the mode of action of azoles against A. fumigatus relies on accumulation of eburicol which exerts fungicidal effects by triggering cell wall carbohydrate patch formation.
Collapse
Affiliation(s)
- Hesham Elsaman
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Evgeny Golubtsov
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sean Brazil
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James's Hospital Campus, Dublin, Ireland
| | - Natanya Ng
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James's Hospital Campus, Dublin, Ireland
| | - Isabel Klugherz
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Ronny Martin
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Karl Dichtl
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Wagener
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James's Hospital Campus, Dublin, Ireland.
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
9
|
Korkmaz E, Ergon MC. Investigation of antifungal susceptibility of Aspergillus species isolated from systemic clinical specimens by different methods. Indian J Med Microbiol 2024; 50:100642. [PMID: 38830536 DOI: 10.1016/j.ijmmb.2024.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE Due to the potential for Aspergillus species to cause lethal infections and the rising rates of antifungal resistance, the significance of antifungal susceptibility tests has increased. We aimed to assess the sensitivities of Aspergillus species to amphotericin B (AMB), voriconazole (VOR), itraconazole (ITZ), and caspofungin (CAS) using disk diffusion (DD) and gradient diffusion (GD) methods and compare them with broth microdilution (BMD) as the reference susceptibility method. METHODS The study involved 62 Aspergillus fumigatus, 28 Aspergillus flavus, and 16 Aspergillus terreus isolates, totaling 106 Aspergillus isolates. BMD and DD methods were performed in accordance with CLSI M38-A2 and CLSI M51-A documents, respectively. The GD method utilized nonsupplemented Mueller Hinton agar (MHA) as the medium. RESULTS In the BMD method, the lowest minimal inhibitory concentration (MIC)90 or minimal effective concentration (MEC)90 values were observed for VOR and CAS (0.5 μg/mL and 0.06 μg/mL, respectively). AMB and ITZ MIC90 values were both 2 μg/mL. In our comparison of the GD method with the BMD method at ±2 dilution, we observed essential agreement rates of 91.6%, 99.1%, 100%, and 38.6% for AMB, VOR, ITZ, and CAS, respectively. When comparing DD and BMD methods, we found categorical agreement rates of 65.1%, 99.1%, 77.3%, and 100% for AMB, VOR, ITZ, and CAS, respectively. For GD and BMD methods, these rates were 79.2%, 99.1%, 87.8%, and 100%. CONCLUSIONS Given the high essential and categorical agreement rates, we posit that the GD method is a viable alternative to the BMD method for AMB, ITZ and VOR but not for CAS. In addition, the use of nonsupplemented MHA in the GD method proves advantageous due to its cost-effectiveness and widespread availability compared to other growth media.
Collapse
Affiliation(s)
- Emine Korkmaz
- Dokuz Eylül University Faculty of Medicine, Department of Medical Microbiology, İzmir, Turkey.
| | - M Cem Ergon
- Dokuz Eylül University Faculty of Medicine, Department of Medical Microbiology, İzmir, Turkey.
| |
Collapse
|
10
|
Saha D, Gregor JB, Hoda S, Eastman KE, Navarrete M, Wisecaver JH, Briggs SD. Candida glabrata maintains two Hap1 homologs, Zcf27 and Zcf4, for distinct roles in ergosterol gene regulation to mediate sterol homeostasis under azole and hypoxic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599910. [PMID: 38979343 PMCID: PMC11230168 DOI: 10.1101/2024.06.20.599910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Candida glabrata exhibits innate resistance to azole antifungal drugs but also has the propensity to rapidly develop clinical drug resistance. Azole drugs, which target Erg11, is one of the three major classes of antifungals used to treat Candida infections. Despite their widespread use, the mechanism controlling azole-induced ERG gene expression and drug resistance in C. glabrata has primarily revolved around Upc2 and/or Pdr1. In this study, we determined the function of two zinc cluster transcription factors, Zcf27 and Zcf4, as direct but distinct regulators of ERG genes. Our phylogenetic analysis revealed C. glabrata Zcf27 and Zcf4 as the closest homologs to Saccharomyces cerevisiae Hap1. Hap1 is a known zinc cluster transcription factor in S. cerevisiae in controlling ERG gene expression under aerobic and hypoxic conditions. Interestingly, when we deleted HAP1 or ZCF27 in either S. cerevisiae or C. glabrata, respectively, both deletion strains showed altered susceptibility to azole drugs, whereas the strain deleted for ZCF4 did not exhibit azole susceptibility. We also determined that the increased azole susceptibility in a zcf27Δ strain is attributed to decreased azole-induced expression of ERG genes, resulting in decreased levels of total ergosterol. Surprisingly, Zcf4 protein expression is barely detected under aerobic conditions but is specifically induced under hypoxic conditions. However, under hypoxic conditions, Zcf4 but not Zcf27 was directly required for the repression of ERG genes. This study provides the first demonstration that Zcf27 and Zcf4 have evolved to serve distinct roles allowing C. glabrata to adapt to specific host and environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Scott D. Briggs
- Department of Biochemistry
- Purdue University Institute for Cancer Research
| |
Collapse
|
11
|
Guan Q, Xing S, Wang L, Zhu J, Guo C, Xu C, Zhao Q, Wu Y, Chen Y, Sun H. Triazoles in Medicinal Chemistry: Physicochemical Properties, Bioisosterism, and Application. J Med Chem 2024; 67:7788-7824. [PMID: 38699796 DOI: 10.1021/acs.jmedchem.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Triazole demonstrates distinctive physicochemical properties, characterized by weak basicity, various dipole moments, and significant dual hydrogen bond acceptor and donor capabilities. These features are poised to play a pivotal role in drug-target interactions. The inherent polarity of triazole contributes to its lower logP, suggesting the potential improvement in water solubility. The metabolic stability of triazole adds additional value to drug discovery. Moreover, the metal-binding capacity of the nitrogen atom lone pair electrons of triazole has broad applications in the development of metal chelators and antifungal agents. This Perspective aims to underscore the unique physicochemical attributes of triazole and its application. A comparative analysis involving triazole isomers and other heterocycles provides guiding insights for the subsequent design of triazoles, with the hope of offering valuable considerations for designing other heterocycles in medicinal chemistry.
Collapse
Affiliation(s)
- Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jiawei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
12
|
Couchepin J, Reinhold I, Kronig I, Guidi M, Buclin T, Schreiber PW, Neofytos D, Lamoth F. Isavuconazole for the Treatment of Fungal Infections: A Real-life Experience From the Fungal Infection Network of Switzerland (FUNGINOS). Open Forum Infect Dis 2024; 11:ofae223. [PMID: 38756765 PMCID: PMC11097116 DOI: 10.1093/ofid/ofae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
This analysis of 116 isavuconazole therapy courses shows that hepatic test disturbances (HTDs) were relatively frequent (29% of cases) but rarely led to treatment interruption (5%). Importantly, patients with baseline HTDs, including those attributed to a first-line triazole, did not exhibit a higher risk of subsequent HTD under isavuconazole therapy.
Collapse
Affiliation(s)
- Jade Couchepin
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ilana Reinhold
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Ilona Kronig
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Monia Guidi
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Buclin
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Peter W Schreiber
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Dionysios Neofytos
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Frederic Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Mlakić M, Barić D, Ratković A, Šagud I, Čipor I, Piantanida I, Odak I, Škorić I. New Charged Cholinesterase Inhibitors: Design, Synthesis, and Characterization. Molecules 2024; 29:1622. [PMID: 38611900 PMCID: PMC11013433 DOI: 10.3390/molecules29071622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Triazoles and triazolium salts are very common subunits in the structures of various drugs. Medicaments with a characteristic 1,2,3-triazole core are also being developed to treat neurodegenerative disorders associated with cholinesterase enzyme activity. Several naphtho- and thienobenzo-triazoles from our previous research emerged as being particularly promising in that sense. For this reason, in this research, new naphtho- and thienobenzo-triazoles 23-34, as well as 1,2,3-triazolium salts 44-51, were synthesized and tested. Triazolium salts 44-46 showed excellent activity while salts 47 and 49 showed very good inhibition toward both butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes. In contrast, neutral photoproducts were shown to be selective towards BChE but with very good inhibition potential as molecules 24-27. The representative of newly prepared compounds, 45 and 50, were stable in aqueous solution and revealed intriguing fluorimetric properties, characterized by a strong Stokes shift of >160 nm. Despite their condensed polycyclic structure shaped similarly to well-known DNA-intercalator ethidium bromide, the studied compounds did not show any interaction with ds-DNA, likely due to the unfavorable steric hindrance of substituents. However, the studied dyes bind proteins, particularly showing very diverse inhibition properties toward AChE and BChE. In contrast, neutral photoproducts were shown to be selective towards a certain enzyme but with moderate inhibition potential. The molecular docking of the best-performing candidates to cholinesterases' active sites identified cation-π interactions as the most responsible for the stability of the enzyme-ligand complexes. As genotoxicity studies are crucial when developing new active substances and finished drug forms, in silico studies for all the compounds synthesized have been performed.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10 000 Zagreb, Croatia;
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10 000 Zagreb, Croatia;
| | - Ana Ratković
- Chemistry, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10 000 Zagreb, Croatia;
| | - Ivana Šagud
- Croatian Agency for Medicinal Products and Medical Devices, Ksaverska Cesta 4, HR-10 000 Zagreb, Croatia;
| | - Ivona Čipor
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10 000 Zagreb, Croatia; (I.Č.); (I.P.)
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10 000 Zagreb, Croatia; (I.Č.); (I.P.)
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10 000 Zagreb, Croatia;
| |
Collapse
|
14
|
Lax C, Nicolás FE, Navarro E, Garre V. Molecular mechanisms that govern infection and antifungal resistance in Mucorales. Microbiol Mol Biol Rev 2024; 88:e0018822. [PMID: 38445820 PMCID: PMC10966947 DOI: 10.1128/mmbr.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
SUMMARYThe World Health Organization has established a fungal priority pathogens list that includes species critical or highly important to human health. Among them is the order Mucorales, a fungal group comprising at least 39 species responsible for the life-threatening infection known as mucormycosis. Despite the continuous rise in cases and the poor prognosis due to innate resistance to most antifungal drugs used in the clinic, Mucorales has received limited attention, partly because of the difficulties in performing genetic manipulations. The COVID-19 pandemic has further escalated cases, with some patients experiencing the COVID-19-associated mucormycosis, highlighting the urgent need to increase knowledge about these fungi. This review addresses significant challenges in treating the disease, including delayed and poor diagnosis, the lack of accurate global incidence estimation, and the limited treatment options. Furthermore, it focuses on the most recent discoveries regarding the mechanisms and genes involved in the development of the disease, antifungal resistance, and the host defense response. Substantial advancements have been made in identifying key fungal genes responsible for invasion and tissue damage, host receptors exploited by the fungus to invade tissues, and mechanisms of antifungal resistance. This knowledge is expected to pave the way for the development of new antifungals to combat mucormycosis. In addition, we anticipate significant progress in characterizing Mucorales biology, particularly the mechanisms involved in pathogenesis and antifungal resistance, with the possibilities offered by CRISPR-Cas9 technology for genetic manipulation of the previously intractable Mucorales species.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Francisco E. Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
15
|
Chen J, Xu S, Yu W, Sun C, Zhang W. Evaluating cardiac disorders associated with triazole antifungal agents based on the US Food and Drug Administration Adverse Event reporting system database. Front Pharmacol 2024; 15:1255918. [PMID: 38584605 PMCID: PMC10997335 DOI: 10.3389/fphar.2024.1255918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Triazole antifungal agents are widely used to treat and prevent systemic mycoses. With wide clinical use, the number of reported adverse events has gradually increased. The aim of this study was to analyze the cardiac disorders associated with TAAs (fluconazole, voriconazole, itraconazole, posaconazole and isavuconazole) based on data from the US Food and Drug Administration Adverse Event Reporting System FDA Adverse Event Reporting System. Methods Data were extracted from the FAERS database between the first quarter of 2004 and third quarter of 2022. The clinical characteristics in TAA-associated cardiac AE reports were analyzed. Disproportionality analysis was performed to evaluate the potential association between AEs and TAAs using the reporting odds ratio (ROR) and proportional reporting ratio (PRR). Results Among 10,178,522 AE reports, 1719 reports were TAA-associated cardiac AEs as primary suspect drug. Most reports were related to fluconazole (38.34%), voriconazole (28.56%) and itraconazole (26.76%). Itraconazole (N = 195, 42.39%) and isavuconazole (N = 2, 14.29%) had fewer serious outcome events than three other drugs including fluconazole, voriconazole, and posaconazole. 13, 11, 26, 5 and 1 signals were detected for fluconazole, voriconazole, itraconazole, posaconazole and isavuconazole, respectively. The number of new signals unrecorded in the drug label was 9, 2, 13, 2 and 0 for fluconazole, voriconazole, itraconazole, posaconazole and isavuconazole, respectively. Conclusion Isavuconazole might be the safest of the five TAAs for cardiac AEs. TAA-associated cardiac disorders may result in serious adverse outcomes. Therefore, in addition to AEs on the drug label, we should pay attention to new AEs unrecorded on the drug label during the clinical use of TAAs.
Collapse
Affiliation(s)
- Jinhua Chen
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Provincial Key Laboratory of Anticancer Drug Research, Zhengzhou, China
| | - Shijun Xu
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Weijiang Yu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Provincial Key Laboratory of Anticancer Drug Research, Zhengzhou, China
| | - Cuicui Sun
- Department of Pharmacy, Qilu Hospital of Shandong University, Ji’nan, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Provincial Key Laboratory of Anticancer Drug Research, Zhengzhou, China
| |
Collapse
|
16
|
Gao Z, Zhang J, Li K, Sun Y, Wu X, Zhang G, Liu R, Liu R, Zhao D, Cheng M. Design, synthesis and evaluation of 2-phenylpyrimidine derivatives as novel antifungal agents targeting CYP51. RSC Med Chem 2024; 15:492-505. [PMID: 38389880 PMCID: PMC10880905 DOI: 10.1039/d3md00589e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 02/24/2024] Open
Abstract
Invasive fungal infections, with high morbidity and mortality, have become one of the most serious threats to human health. There are a few kinds of clinical antifungal drugs but large amounts of them are used, so there is an urgent need for a new structural type of antifungal drug. In this study, we carried out three rounds of structural optimisation and modification of the compound YW-01, which was obtained from the preliminary screening of the group, by using the strategy of scaffold hopping. A series of novel phenylpyrimidine CYP51 inhibitors were designed and synthesised. In vitro antifungal testing showed that target compound C6 exhibited good efficacy against seven common clinically susceptible strains, which was significantly superior to the clinical first-line drug fluconazole. Subsequently in vitro tests on metabolic stability and cytotoxicity revealed that C6 was safe and stable for hepatic microsomal function. Finally, C6 warranted further exploration as a possible novel structural type of CYP51 inhibitor.
Collapse
Affiliation(s)
- Zixuan Gao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Jiachen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Kejian Li
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Xudong Wu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Guoqi Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Rongrong Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Rui Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| |
Collapse
|
17
|
Le TD, Nguyen TC, Hoang TKD, Huynh MK, Phan QT, Van Meervelt L. Synthesis, crystal structure and Hirshfeld surface analysis of 2-({5-[(naphthalen-1-yl)meth-yl]-4-phenyl-4 H-1,2,4-triazol-3-yl}sulfan-yl)-1-(4-nitro-phen-yl)ethanone. Acta Crystallogr E Crystallogr Commun 2024; 80:218-222. [PMID: 38333127 PMCID: PMC10848969 DOI: 10.1107/s2056989024000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The title compound, C27H20N4O3S, crystallizes in the monoclinic system, space group P21/n, with Z = 4. The global shape of the mol-ecule is determined by the orientation of the substituents on the central 4H-1,2,4-triazole ring. The nitro-phenyl ring, phenyl ring, and naphthalene ring system are oriented at dihedral angles of 82.95 (17), 77.14 (18) and 89.46 (15)°, respectively, with respect to the triazole ring. The crystal packing features chain formation in the b-axis direction by S⋯O inter-actions. A Hirshfeld surface analysis indicates that the highest contributions to surface contacts arise from contacts in which H atoms are involved.
Collapse
Affiliation(s)
- Trong Duc Le
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A Thanh Loc 29 Street, District 12, Ho Chi Minh City, Vietnam
| | - Tien Cong Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Thi Kim Dung Hoang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A Thanh Loc 29 Street, District 12, Ho Chi Minh City, Vietnam
| | - Minh Khoi Huynh
- Hau Nghia High School, 825 Street Section A, Duc Hoa District, Long An Province, Vietnam
| | - Quang Thang Phan
- Hau Nghia High School, 825 Street Section A, Duc Hoa District, Long An Province, Vietnam
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
| |
Collapse
|
18
|
Shah B, Kajal S, Bhalla AS, Madan K, Viswanathan GK, Thakar A, Sikka K, Bairwa M, Verma H. Prolonged Itraconazole Therapy as Sole Treatment for Patients with Allergic Fungal Rhinosinusitis. Laryngoscope 2024; 134:545-551. [PMID: 37377280 DOI: 10.1002/lary.30841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Currently, the mainstay of treatment for allergic fungal rhinosinusitis (AFRS) is surgical debridement along with topical or systemic steroids. However, prolonged systemic steroid therapy comes with side effects and is also sometimes contraindicated. Systemic antifungals have been used earlier as an adjunct to steroids or in refractory cases, but they have not been used as the sole primary treatment. OBJECTIVE To study the effectiveness of sole Itraconazole therapy in patients with AFRS by comparison of clinical, radiological, and biochemical parameters before and after treatment. METHODS Thirty-four patients diagnosed with localized sino-nasal AFRS were recruited and started on the tablet Itraconazole 200 mg orally twice daily for 3 months with q2weekly monitoring of liver function tests. The baseline clinical, radiological, and biochemical parameters were then compared with those after completion of 3 months of Itraconazole therapy. RESULTS There was significant difference between all the parameters-clinical: SNOT-22 score (p < 0.001) and Meltzer endoscopy score (p < 0.001), radiological: Lund-Mackay score (p = 0.004) and 20-point CT score (p = 0.002), and biochemical: serum total IgE (p < 0.001), Aspergillus-specific IgE (p < 0.001), and absolute eosinophil count (p < 0.001). The clearance of the disease was more in anterior sinuses than the posterior ones. CONCLUSION Prolonged Itraconazole can be given as sole therapy in AFRS, especially in patients for whom steroids are contraindicated or in those who are awaiting surgery. It can result in symptomatic and radiological improvement, but surgery still remains the definitive treatment option for AFRS for complete clearance of disease. LEVEL OF EVIDENCE 3 Laryngoscope, 134:545-551, 2024.
Collapse
Affiliation(s)
- B Shah
- Department of Otorhinolaryngology and Head-Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - S Kajal
- Department of Otorhinolaryngology and Head-Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - A S Bhalla
- Department of Radiodiagnosis, AIIMS, New Delhi, India
| | - K Madan
- Department of Pulmonary Medicine, AIIMS, New Delhi, India
| | - G K Viswanathan
- Department of Haematology and Oncology, AIIMS, New Delhi, India
| | - A Thakar
- Department of Otorhinolaryngology and Head-Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - K Sikka
- Department of Otorhinolaryngology and Head-Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - M Bairwa
- Department of Community Medicine, AIIMS, New Delhi, India
| | - H Verma
- Department of Otorhinolaryngology and Head-Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
19
|
Lockhart SR, Smith DJ, Gold JAW. Trichophyton indotineae and other terbinafine-resistant dermatophytes in North America. J Clin Microbiol 2023; 61:e0090323. [PMID: 38014979 PMCID: PMC10729746 DOI: 10.1128/jcm.00903-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Dermatophyte infections (a.k.a. ringworm, tinea) affect an estimated 20%-25% of the world's population. In North America, most dermatophytoses are caused by Trichophyton rubrum or Trichophyton mentagrophytes species complexes. Severe and antifungal-resistant dermatophytoses are a growing global public health problem. A new species of the T. mentagrophytes species complex, Trichophyton indotineae, has recently emerged and is notable for the severe infections it causes, its propensity for antifungal resistance, and its global spread. In this issue of the Journal of Clinical Microbiology, C. F. Cañete-Gibas, J. Mele, H. P. Patterson, et al. (J Clin Microbiol 61:e00562-23, 2023, https://doi.org/10.1128/JCM.00562-23) summarize the results of speciation and AFST performed on North American dermatophyte isolates received at a fungal diagnostic reference laboratory. Within their collection, 18.6% of isolates were resistant to terbinafine (a first-line oral antifungal for dermatophytoses), and similar proportions of T. rubrum and T. indotineae demonstrated terbinafine resistance. The authors also found that T. indotineae has been present in North America since at least 2017. These findings highlight the importance of increased surveillance efforts to monitor trends in severe and antifungal-resistant dermatophytoses and the need for antifungal stewardship efforts, the success of which is contingent upon improving laboratory capacity for dermatophyte speciation and AFST.
Collapse
Affiliation(s)
- Shawn R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dallas J. Smith
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Dresler E, Woliński P, Wróblewska A, Jasiński R. On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions between Aryl Azides and Ethyl Propiolate. Molecules 2023; 28:8152. [PMID: 38138640 PMCID: PMC10745654 DOI: 10.3390/molecules28248152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
The molecular mechanism of the [3+2] cycloaddition reactions between aryl azides and ethyl propiolate was evaluated in the framework of the Molecular Electron Density Theory. It was found that independently of the nature of the substituent within the azide molecule, the cycloaddition process is realized via a polar but single-step mechanism. All attempts of localization as postulated earlier by Abu-Orabi and coworkers' zwitterionic intermediates were not successful. At the same time, the formation of zwitterions with an "extended" conformation is possible on parallel reaction paths. The ELF analysis shows that the studied cycloaddition reaction leading to the 1,4-triazole proceeds by a two-stage one-step mechanism. It also revealed that both zwitterions are created by the donation of the nitrogen atom's nonbonding electron densities to carbon atoms of ethyl propiolate.
Collapse
Affiliation(s)
- Ewa Dresler
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland;
| | - Przemysław Woliński
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| | - Aneta Wróblewska
- Department of Organic Chemistry, Faculty of Chemistry, University of Lódź, Tamka 12, 91-403 Łódź, Poland;
| | - Radomir Jasiński
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| |
Collapse
|
21
|
Weng N, Zhang Z, Tan Y, Zhang X, Wei X, Zhu Q. Repurposing antifungal drugs for cancer therapy. J Adv Res 2023; 48:259-273. [PMID: 36067975 PMCID: PMC10248799 DOI: 10.1016/j.jare.2022.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Repurposing antifungal drugs in cancer therapy has attracted unprecedented attention in both preclinical and clinical research due to specific advantages, such as safety, high-cost effectiveness and time savings compared with cancer drug discovery. The surprising and encouraging efficacy of antifungal drugs in cancer therapy, mechanistically, is attributed to the overlapping targets or molecular pathways between fungal and cancer pathogenesis. Advancements in omics, informatics and analytical technology have led to the discovery of increasing "off-site" targets from antifungal drugs involved in cancerogenesis, such as smoothened (D477G) inhibition from itraconazole in basal cell carcinoma. AIM OF REVIEW This review illustrates several antifungal drugs repurposed for cancer therapy and reveals the underlying mechanism based on their original target and "off-site" target. Furthermore, the challenges and perspectives for the future development and clinical applications of antifungal drugs for cancer therapy are also discussed, providing a refresh understanding of drug repurposing. KEY SCIENTIFIC CONCEPTS OF REVIEW This review may provide a basic understanding of repurposed antifungal drugs for clinical cancer management, thereby helping antifungal drugs broaden new indications and promote clinical translation.
Collapse
Affiliation(s)
- Ningna Weng
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian 350011, PR China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China; Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhan Tan
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
22
|
Xun T, Rong Y, Lv B, Tian J, Zhang Q, Yang X. Interaction and potential mechanisms between atorvastatin and voriconazole, agents used to treat dyslipidemia and fungal infections. Front Pharmacol 2023; 14:1165950. [PMID: 37251310 PMCID: PMC10213937 DOI: 10.3389/fphar.2023.1165950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose: Voriconazole (VOR) is combined with atorvastatin (ATO) to treat fungal infections in patients with dyslipidemia in clinical practice. However, the pharmacokinetic interactions and potential mechanisms between them are unknown. Therefore, this study aimed to investigate the pharmacokinetic interactions and potential mechanisms between ATO and VOR. Patients and methods: We collected plasma samples from three patients using ATO and VOR. Rats were administered either VOR or normal saline for 6 days, followed by a single dose of 2 mg/kg ATO, and then plasma samples were collected at different time points. The incubation models of human liver microsomes or HepG2 cells were constructed in vitro. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) system was developed to determine the concentration of ATO, 2-hydroxy-ATO, 4-hydroxy-ATO, and VOR. Results: In patients, VOR significantly reduced the metabolism of ATO and slowed the formation of 2-hydroxy- and 4-hydroxy-ATO. In rats pretreated with orally administered VOR for 6 days or normal saline given a single dose of 2 mg/kg ATO administered orally on Day 6, the t1/2 of ATO was significantly prolonged from 3.61 to 6.43 h, and the area under the concentration-time curve (AUC0-24h) values of ATO increased from 53.86 to 176.84 h μg.L-1. However, the pharmacokinetic parameters of VOR (20 mg/kg) with or without pretreatment with ATO (2 mg/kg) only slightly changed. In vitro studies indicated that VOR inhibited the metabolism of ATO and testosterone, and the IC50 values were 45.94 and 49.81 μM. However, no significant change in transporter behaviors of ATO was observed when VOR or transporter inhibitors were co-administered. Conclusion: Our study demonstrated that VOR has significant interactions with ATO, probably due to VOR's inhibition of the CYP3A4-mediated metabolism of ATO. Based on the clinical cases and potential interactions, the basic data obtained in our study are expected to help adjust the dose of ATO and promote the design of rational dosage regimens for pharmacotherapy for fungal infections in patients with dyslipidemia.
Collapse
Affiliation(s)
- Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yan Rong
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Bin Lv
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jinfei Tian
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qing Zhang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
23
|
Rabaan AA, Sulaiman T, Al-Ahmed SH, Buhaliqah ZA, Buhaliqah AA, AlYuosof B, Alfaresi M, Al Fares MA, Alwarthan S, Alkathlan MS, Almaghrabi RS, Abuzaid AA, Altowaileb JA, Al Ibrahim M, AlSalman EM, Alsalman F, Alghounaim M, Bueid AS, Al-Omari A, Mohapatra RK. Potential Strategies to Control the Risk of Antifungal Resistance in Humans: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12030608. [PMID: 36978475 PMCID: PMC10045400 DOI: 10.3390/antibiotics12030608] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/30/2023] Open
Abstract
Fungal infections are becoming one of the main causes of morbidity and mortality in people with weakened immune systems. Mycoses are becoming more common, despite greater knowledge and better treatment methods, due to the regular emergence of resistance to the antifungal medications used in clinical settings. Antifungal therapy is the mainstay of patient management for acute and chronic mycoses. However, the limited availability of antifungal drug classes limits the range of available treatments. Additionally, several drawbacks to treating mycoses include unfavourable side effects, a limited activity spectrum, a paucity of targets, and fungal resistance, all of which continue to be significant issues in developing antifungal drugs. The emergence of antifungal drug resistance has eliminated accessible drug classes as treatment choices, which significantly compromises the clinical management of fungal illnesses. In some situations, the emergence of strains resistant to many antifungal medications is a major concern. Although new medications have been developed to address this issue, antifungal drug resistance has grown more pronounced, particularly in patients who need long-term care or are undergoing antifungal prophylaxis. Moreover, the mechanisms that cause resistance must be well understood, including modifications in drug target affinities and abundances, along with biofilms and efflux pumps that diminish intracellular drug levels, to find novel antifungal drugs and drug targets. In this review, different classes of antifungal agents, and their resistance mechanisms, have been discussed. The latter part of the review focuses on the strategies by which we can overcome this serious issue of antifungal resistance in humans.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Zainab A Buhaliqah
- Department of Family Medicine, Primary Healthcare Center, Dammam 32433, Saudi Arabia
| | - Ali A Buhaliqah
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohammed S Alkathlan
- Infectious Diseases Department, King Fahad Specialist Hospital, Buraydah 52382, Saudi Arabia
| | - Reem S Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Jaffar A Altowaileb
- Microbiology Laboratory, Laboratory Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Maha Al Ibrahim
- Microbiology Laboratory, Laboratory Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Eman M AlSalman
- Department of Family Medicine, Primary Health Care Centers, Qatif Health Network, Qatif 31911, Saudi Arabia
| | - Fatimah Alsalman
- Department of Emergency Medicine, Oyun City Hospital, Al-Ahsa 36312, Saudi Arabia
| | | | - Ahmed S Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| | - Awad Al-Omari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Research Center, Dr. Sulaiman Al Habib Medical Group, Riyadh 11372, Saudi Arabia
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| |
Collapse
|
24
|
Mucorales and Mucormycosis: Recent Insights and Future Prospects. J Fungi (Basel) 2023; 9:jof9030335. [PMID: 36983503 PMCID: PMC10058716 DOI: 10.3390/jof9030335] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The classification of Mucorales encompasses a collection of basal fungi that have traditionally demonstrated an aversion to modern genetic manipulation techniques. This aversion led to a scarcity of knowledge regarding their biology compared to other fungal groups. However, the emergence of mucormycosis, a fungal disease caused by Mucorales, has attracted the attention of the clinical field, mainly because available therapies are ineffective for decreasing the fatal outcome associated with the disease. This revitalized curiosity about Mucorales and mucormycosis, also encouraged by the recent COVID-19 pandemic, has spurred a significant and productive effort to uncover their mysteries in recent years. Here, we elaborate on the most remarkable breakthroughs related to the recently discovered genetic advances in Mucorales and mucormycosis. The utilization of a few genetic study models has enabled the identification of virulence factors in Mucorales that were previously described in other pathogens. More notably, recent investigations have identified novel genes and mechanisms controlling the pathogenic potential of Mucorales and their interactions with the host, providing fresh avenues to devise new strategies against mucormycosis. Finally, new study models are allowing virulence studies that were previously hampered in Mucorales, predicting a prolific future for the field.
Collapse
|
25
|
Buza A, Türkeş C, Arslan M, Demir Y, Dincer B, Nixha AR, Beydemir Ş. Discovery of novel benzenesulfonamides incorporating 1,2,3-triazole scaffold as carbonic anhydrase I, II, IX, and XII inhibitors. Int J Biol Macromol 2023; 239:124232. [PMID: 37001773 DOI: 10.1016/j.ijbiomac.2023.124232] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Sulfonamides are among the most promising potential inhibitors for carbonic anhydrases (CAs), which are pharmaceutically relevant targets for treating several disease conditions. Herein, a series of benzenesulfonamides bearing 1,2,3-triazole moiety as inhibitors of human (h) α-CAs (hCAs) were designed using the tail approach. The design method combines a benzenesulfonamide moiety with a tail of oxime and a zinc-binding group on a 1,2,3-triazole scaffold. Among the synthesized derivatives, the naphthyl (6m, KI of 68.6 nM, SI of 10.3), and methyl (6a, KI of 56.3 nM, SI of 11.7) derivatives (over hCA IX) and propyl (6c, KI of 95.6 nM, SI of 2.7), and pentyl (6d, KI of 51.1 nM, SI of 6.6) derivatives (over hCA XII) displayed a noticeable selectivity for isoforms hCA I and II, respectively. Meanwhile, derivative 6e displayed a potent inhibitory effect versus the cytosolic isoform hCA I (KI of 47.8 nM) and tumor-associated isoforms hCA IX and XII (KIs of 195.9 and 116.9 nM, respectively) compared with the reference drug acetazolamide (AAZ, KIs of 451.8, 437.2, and 338.9 nM, respectively). Derivative 6b showed higher potency (KI of 33.2 nM) than AAZ (KI of 327.3 nM) towards another cytosolic isoform hCA II. Nevertheless, substituting the lipophilic large naphthyl tail to the 1,2,3-triazole linked benzenesulfonamides (6a-n) raised inhibitory effect versus hCA I and XII and selectivity towards hCA I and II isoforms over hCA IX. Evaluation of the cytotoxic potential of the synthesized derivatives was conducted in L929, MCF-7, and Hep-3B cell lines. Several compounds in the series demonstrated significant antiproliferative activity and minimal cytotoxicity. In the molecular docking study, the sulfonamide moiety interacted with the zinc-ion and neatly fit into the hCAs active sites. The extension of the tail was found to participate in diverse hydrophilic and hydrophobic interactions with adjacent amino acids, ultimately influencing the effectiveness and specificity of the derivatives.
Collapse
|
26
|
Le TD, Nguyen TC, Bui TMN, Hoang TKD, Vu QT, Pham CT, Dinh CP, Alhaji JA, Van Meervelt L. SYNTHESIS, STRUCTURE AND α-GLUCOSIDASE INHIBITOR ACTIVITY EVALUATION OF SOME ACETAMIDE DERIVATIVES STARTING FROM 2-(NAPHTHALEN-1-YL) ACETIC ACID, CONTAINING A 1,2,4-TRIAZOLE. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
27
|
Guo Z, Liu X, Wang N, Mo P, Shen J, Liu M, Zhang H, Wang P, Zhang Z. Membrane component ergosterol builds a platform for promoting effector secretion and virulence in Magnaporthe oryzae. THE NEW PHYTOLOGIST 2023; 237:930-943. [PMID: 36300785 DOI: 10.1111/nph.18575] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The plasma membrane (PM) functions as a physical border between the extracellular and cytoplasmic environments that contribute to the interaction between host plants and pathogenic fungi. As a specific sterol constituent in the cell membrane, ergosterol plays a significant role in fungal development. However, the role of ergosterol in the infection of the rice blast fungus Magnaporthe oryzae remains unclear. In this study, we found that a sterol reductase, MoErg4, is involved in ergosterol biosynthesis and the regulation of plasma membrane integrity in M. oryzae. We found that defects in ergosterol biosynthesis disrupt lipid raft formation in the PM and cause an abnormal distribution of the t-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein MoSso1, inhibiting its interaction with the v-SNARE protein MoSnc1. In addition, we found that MoSso1-MoSnc1 interaction is important for biotrophic interface complex development and cytoplasmic effector protein secretion. Our findings suggested that ergosterol-enriched lipid rafts constitute a platform for interactions among various SNARE proteins that are required for the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Ziqian Guo
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nian Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Mo
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ju Shen
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muxing Liu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70118, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
28
|
Khan SA, Akhtar MJ, Gogoi U, Meenakshi DU, Das A. An Overview of 1,2,3-triazole-Containing Hybrids and Their Potential Anticholinesterase Activities. Pharmaceuticals (Basel) 2023; 16:179. [PMID: 37259329 PMCID: PMC9961747 DOI: 10.3390/ph16020179] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 07/30/2023] Open
Abstract
Acetylcholine (ACh) neurotransmitter of the cholinergic system in the brain is involved in learning, memory, stress responses, and cognitive functioning. It is hydrolyzed into choline and acetic acid by two key cholinesterase enzymes, viz., acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). A loss or degeneration of cholinergic neurons that leads to a reduction in ACh levels is considered a significant contributing factor in the development of neurodegenerative diseases (NDs) such as Alzheimer's disease (AD). Numerous studies have shown that cholinesterase inhibitors can raise the level of ACh and, therefore, enhance people's quality of life, and, at the very least, it can temporarily lessen the symptoms of NDs. 1,2,3-triazole, a five-membered heterocyclic ring, is a privileged moiety, that is, a central scaffold, and is capable of interacting with a variety of receptors and enzymes to exhibit a broad range of important biological activities. Recently, it has been clubbed with other pharmacophoric fragments/molecules in hope of obtaining potent and selective AChE and/or BuChE inhibitors. The present updated review succinctly summarizes the different synthetic strategies used to synthesize the 1,2,3-triazole moiety. It also highlights the anticholinesterase potential of various 1,2,3-triazole di/trihybrids reported in the past seven years (2015-2022), including a rationale for hybridization and with an emphasis on their structural features for the development and optimization of cholinesterase inhibitors to treat NDs.
Collapse
Affiliation(s)
- Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat 130, Oman
| | | | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, India
| | | | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, India
| |
Collapse
|
29
|
Suárez-García J, Cano-Herrera MA, María-Gaviria A, Osorio-Echeverri VM, Mendieta-Zerón H, Arias-Olivares D, Benavides-Melo J, García-Sánchez LC, García-Ortíz J, Becerra-Buitrago A, Valero-Rojas J, Rodríguez-González M, García-Eleno MA, Cuevas-Yañez E. Synthesis, characterization, in-vitro biological evaluation and theoretical studies of 1,2,3-triazoles derived from triclosan as Difenoconazole analogues. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
Belakhov VV. Polyfunctional Drugs: Search, Development, Use in Medical Practice, and Environmental Aspects of Preparation and Application (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222130047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
31
|
Computational Study of Some 4’-Aryl-1,2,4-triazol-1-ium-4-R2-phenacylid Derivatives in Vacuum and Dimethylformamide. Symmetry (Basel) 2022. [DOI: 10.3390/sym14102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four carbanion monosubstituted 4’-aryl-1,2,4-triazol-1-ium-4-R2-phenacylids, used as precursors in obtaining new heterocyclic compounds, and their corresponding derivatives belonging to the C2v point group of symmetry were studied by computational means in dimethylformamide (DMF) solutions compared with their isolated state. The changes in the computed parameters induced by the solvent compared with those of the isolated molecules were analyzed in this paper. The charge distribution and the molecular energies in the HOMO and LUMO, the electronic states responsible for the visible absorption band of 4’-aryl-1,2,4-triazol-1-ium-4-R2-phenacylids, in their isolated state and in solutions achieved in DMF were computed and compared with the visible electronic absorption spectra. The molecular descriptors of the studied compounds were computed, and the higher reactivity of the carbanion monosubstituted 4’-aryl-1,2,4-triazol-1-ium-4-R2-phenacylids compared with symmetric derivatives was established. The obtained results can help researchers to obtain new heterocycles with applications in the drug industry.
Collapse
|
32
|
de Souza JF, Santana MVDS, da Silva ACR, Donza MRH, Ferreira VF, Ferreira SB, Sanchez EF, Castro HC, Fuly AL. Study on the synthesis and structure-activity relationship of 1,2,3-triazoles against toxic activities of Bothrops jararaca venom. Z NATURFORSCH C 2022; 77:459-471. [PMID: 35767726 DOI: 10.1515/znc-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
Snakebite envenoming is a health concern and has been a neglected tropical disease since 2017, according to the World Health Organization. In this study, we evaluated the ability of ten 1,2,3-triazole derivatives AM001 to AM010 to inhibit pertinent in vitro (coagulant, hemolytic, and proteolytic) and in vivo (hemorrhagic, edematogenic, and lethal) activities of Bothrops jararaca venom. The derivatives were synthesized, and had their molecular structures fully characterized by CHN element analysis, Fourier-transform infrared spectroscopy and Nuclear magnetic resonance. The derivatives were incubated with the B. jararaca venom (incubation protocol) or administered before (prevention protocol) or after (treatment protocol) the injection of B. jararaca venom into the animals. Briefly, the derivatives were able to inhibit the main toxic effects triggered by B. jararaca venom, though with varying efficacies, and they were devoid of toxicity through in vivo, in silico or in vitro analyses. However, it seemed that the derivatives AM006 or AM010 inhibited more efficiently hemorrhage or lethality, respectively. The derivatives were nontoxic. Therefore, the 1,2,3-triazole derivatives may be useful as an adjuvant to more efficiently treat the local toxic effects caused by B. jararaca envenoming.
Collapse
Affiliation(s)
- Jenifer Frouche de Souza
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil
| | | | - Ana Cláudia Rodrigues da Silva
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil
| | | | - Vitor Francisco Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Federal Fluminense University, Niterói, RJ, Brazil
| | - Sabrina Baptista Ferreira
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, RJ, RJ, Brazil
| | - Eladio Flores Sanchez
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Helena Carla Castro
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Post-Graduate Program in Pathology, University Hospital Antônio Pedro, Federal Fluminense University, Niterói, RJ, Brazil
| | - André Lopes Fuly
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil
| |
Collapse
|
33
|
Dhandapani K, Sivarajan K, Ravindhiran R, Sekar JN. Fungal Infections as an Uprising Threat to Human Health: Chemosensitization of Fungal Pathogens With AFP From Aspergillus giganteus. Front Cell Infect Microbiol 2022; 12:887971. [PMID: 35694549 PMCID: PMC9174459 DOI: 10.3389/fcimb.2022.887971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Occurrence and intensity of systemic invasive fungal infections have significantly risen in recent decades with large amount of mortality and morbidity rates at global level. Treatment therapy lies on the current antifungal interventions and are often limited due to the emergence of resistance to antifungal agents. Chemosensitization of fungal strains to the conventional antimycotic drugs are of growing concern. Current antifungal drugs often have been reported with poor activity and side effects to the host and have a few number of targets to manifest their efficacy on the pathogens. Indiscriminately, the aforementioned issues have been easily resolved by the development of new intervention strategies. One such approach is to employ combinational therapy that has exhibited a great level of inhibitions than that of a single compound. Chemosensitization of pathogenic mycoses to commercial antifungal drugs could be drastically enhanced by co-application of chemosensitizers along with the conventional drugs. Chemosensitizers could address the resistance mechanisms evolved in the pathogenic fungi and targeting the system to make the organism susceptible to commercially and clinically proven antifungal drugs. However, this strategy has not been overreached to the greater level, but it needs much attention to fight against not only with the pathogen but combat the resistance mechanisms of pathogens to drugs. Natural compounds including plant compounds and microbial proteins act as potential chemosensitizers to break the resistance in mycoses. Aspergillus giganteus, a filamentous fungus, is known to produce a cysteine rich extracellular protein called as antifungal protein (AFP). AFP has shown enhanced efficacy against several filamentous and non-filamentous fungal pathogens. On the basis of the reported studies on its targeted potential against pathogenic mycoses, AFP would be fabricated as a good chemosensitizer to augment the fungicidal efficacy of commercial antimycotic drugs. This paper reviews on breakthrough in the discovery of antifungal drugs along with the resistance patterns of mycoses to commercial drugs followed by the current intervention strategies applied to augment the fungicidal potential of drugs.
Collapse
|
34
|
Bagra N, Jain R. Synthesis of 4-(1,2,3-triazol-1-yl)-L-phenylalanines. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2077114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nitin Bagra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
35
|
Wal P, Saraswat N, Vig H. A detailed insight on the molecular and cellular mechanism of action of the antifungal drugs used in the treatment of superficial fungal infections. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220328141054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Dermatomycosis, a type of fungal infection that can infect human skin, hair, and nails; day by day the growth of fungal infections ranging from superficial to systemic infection is alarming. Common causative agents included are Candida, Cryptococcus, Aspergillus, and Pneumocystis species.
Objective:
The effective treatment of the fungal infection includes the use of proper antifungal drug therapy. Antifungal drugs are classified into various classes. This paper focuses on understanding and interpreting the detailed molecular and cellular mechanism of action of various classes of an anti-fungal drug along with their important characteristics along with the safety and efficacy data of individual drugs of the particular class.
Methods:
The data selection for carrying out the respective study has been done by studying the combination of review articles and research papers from different databases like Research Gate, PubMed, MDPI, Elsevier, Science Direct, and Med Crave ranging from the year 1972 to 2019 by using the keywords like “anti-fungal agents”, “dermatophytes”, “cutaneous candidiasis”, “superficial fungal infections”, “oral candidiasis”, “amphotericin”, “echinocandins”, “azoles”, “polyenes” “ketoconazole”, “terbinafine”, “griseofulvin”, “azoles”.
Result:
Based on interpretation, we have concluded that the different classes of antifungal drugs follow the different mechanisms of action and target the fungal cell membrane, and are efficient in reducing fungal disease by their respective mechanism.
Conclusion:
The prevention and cure of fungal infections can be done by oral or topical antifungal drugs that aim to destroy the fungal cell membrane. These drugs show action by their respective pathways that are either preventing the formation of ergosterol or squalene or act by inhibiting β-1,3-glucan synthase enzyme. All the drugs are effective in treating fungal infections.
Collapse
Affiliation(s)
- Pranay Wal
- Dean & Professor, Institute of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, India
| | - Nikita Saraswat
- Assistant Professor, Institute of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, India
| | - Himangi Vig
- Research Scholar, Institute of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, India
| |
Collapse
|
36
|
Repurposing Antifungals for Host-Directed Antiviral Therapy? Pharmaceuticals (Basel) 2022; 15:ph15020212. [PMID: 35215323 PMCID: PMC8878022 DOI: 10.3390/ph15020212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Because of their epidemic and pandemic potential, emerging viruses are a major threat to global healthcare systems. While vaccination is in general a straightforward approach to prevent viral infections, immunization can also cause escape mutants that hide from immune cell and antibody detection. Thus, other approaches than immunization are critical for the management and control of viral infections. Viruses are prone to mutations leading to the rapid emergence of resistant strains upon treatment with direct antivirals. In contrast to the direct interference with pathogen components, host-directed therapies aim to target host factors that are essential for the pathogenic replication cycle or to improve the host defense mechanisms, thus circumventing resistance. These relatively new approaches are often based on the repurposing of drugs which are already licensed for the treatment of other unrelated diseases. Here, we summarize what is known about the mechanisms and modes of action for a potential use of antifungals as repurposed host-directed anti-infectives for the therapeutic intervention to control viral infections.
Collapse
|
37
|
|
38
|
Jeong JY, Kim B, Ji SY, Baek YC, Kim M, Park SH, Jung H. Effect of Flutriafol Exposure on Residue Characteristics in Pig Muscle and Fat Tissue. Food Sci Anim Resour 2022; 42:186-196. [PMID: 35028583 PMCID: PMC8728499 DOI: 10.5851/kosfa.2021.e61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/10/2023] Open
Abstract
This study investigated the effect of exposure to flutriafol based on residues in
pigs. Pigs were exposed to different concentrations (0.313, 0.625, 3.125, 6.25,
and 12.5 mg/kg bw/d, n=20) for 4 wk in different treatment groups. Serum
biochemical analysis, residue levels, and histological analysis were conducted
using the VetTest chemistry analyzer, liquid chromatography mass spectrometry,
and Masson’s trichrome staining, respectively. The body weight (initial
and final) was not significantly different between groups. Parameters such as
creatinine, blood urea nitrogen, alanine aminotransferase, and lipase levels
were significantly different as compared to the control group. Flutriafol
increased the residue limits in individual tissue of the pigs in a dose
dependent manner. Flutriafol exposures indicated the presence of fibrosis, as
confirmed from Masson’s trichrome staining. These results suggest that
flutriafol affects the morphology and serum levels in pigs. The dietary
flutriafol levels can provide a basis for maximum residue limits and food safety
for pork and related products.
Collapse
Affiliation(s)
- Jin Young Jeong
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Byeonghyeon Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang Yun Ji
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Youl Chang Baek
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Minji Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seol Hwa Park
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
39
|
Chen L, Li L, Chen W. Use of Modeling and Simulation to Predict the Influence of Triazole Antifungal Agents on the Pharmacokinetics of Crizotinib. Clin Pharmacol Drug Dev 2022; 11:724-733. [PMID: 34995400 DOI: 10.1002/cpdd.1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 11/08/2022]
Abstract
Crizotinib is used for the treatment of c-ros oncogene 1-positive advanced non-small-cell lung cancer. Triazole antifungal agents are widely used for invasive fungal infections in clinical practice. To predict the potential influence of different triazoles (voriconazole, fluconazole, and itraconazole) on the pharmacokinetics of crizotinib by modeling and simulation the physiologically based pharmacokinetic models were established and validated in virtual cancer subjects through Simcyp software based on the essential physicochemical properties and pharmacokinetic data collected. The validated physiologically based pharmacokinetic models were applied to predict the drug-drug interactions between crizotinib and different triazoles (voriconazole, fluconazole, or itraconazole) in patients with cancer. Crizotinib and triazole antifungal agents were administered orally. The predicted plasma concentration vs time profiles of crizotinib, voriconazole, fluconazole, and itraconazole showed good agreement with observed, respectively. The geometric mean area under the plasma concentration-time curve (AUC) of crizotinib was increased by 84%, 58%, and 79% when coadministered with voriconazole, fluconazole, or itraconazole at multiple doses, respectively. The drug-drug interaction results showed increased pharmacokinetic exposure (maximum plasma concentration and area under the plasma concentration-time curve) of crizotinib when coadministrated with different triazoles (voriconazole > itraconazole > fluconazole). Among the 3 triazoles, voriconazole exhibited the most significant influence on the pharmacokinetic exposure of crizotinib. In clinic, adverse drug reactions and toxicity related to crizotinib should be carefully monitored, and therapeutic drug monitoring for crizotinib is recommended to guide dosing and optimize treatment when coadministered with voriconazole, fluconazole, or itraconazole.
Collapse
Affiliation(s)
- Lu Chen
- Chongqing University Cancer Hospital, Chongqing, China
| | - Lixian Li
- Chongqing University Cancer Hospital, Chongqing, China
| | - Wanyi Chen
- Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
40
|
Ratković A, Mlakić M, Dehaen W, Opsomer T, Barić D, Škorić I. Synthesis and photochemistry of novel 1,2,3-triazole di-heterostilbenes. An experimental and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120056. [PMID: 34146829 DOI: 10.1016/j.saa.2021.120056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The synthesis, photoreactivity, and spectroscopic characterization of novel 1,2,3-triazole di-heterostilbenes bearing various aliphatic and aromatic substituents on the triazole rings were thoroughly explored. By introducing triazole rings into the o-divinylbenzene moiety, compared with the 2-furyl and 2-thienyl heteroanalogues, these compounds did not show any photochemical reactivity toward intramolecular cycloaddition reactions or electrocyclization processes. The research is further extended to the more in-depth examination of photochemical and photophysical characteristics of the investigated triazolo-stilbenes to explain the lack of reactivity in intramolecular photochemical cyclizations by configuration and substituent effects. Conformations of synthetically obtained novel triazoles are examined by Density Functional Theory (DFT). The time dependent-DFT approach was employed to obtain additional insight into the properties observed with UV/Vis spectroscopy. The frontier orbital energy was computationally investigated to determine the influence of cis-trans isomerism and the nature of substituents on the spectroscopic properties of the triazoles. Along with our previous studies of similar compounds containing furan and thiophene, respectively, this study shows that introducing various heteroaromatic rings induces diverse photochemistry and photophysics due to the conformational changes and change in electronic distribution within the molecular system.
Collapse
Affiliation(s)
- Ana Ratković
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
| | - Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | - Tomas Opsomer
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia.
| |
Collapse
|
41
|
Shubitz LF, Schlacks S, Vishkautsan P, Butkiewicz CD, Worthing KA. Posaconazole treatment of refractory coccidioidomycosis in dogs. J Vet Intern Med 2021; 35:2772-2777. [PMID: 34658074 PMCID: PMC8692207 DOI: 10.1111/jvim.16282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background The majority of dogs with coccidioidomycosis recover with administration of fluconazole or itraconazole, although some cases are refractory or the dogs do not tolerate administration of these medications. Objectives The objective was to describe the treatment outcomes and therapeutic monitoring of 8 dogs with refractory coccidioidomycosis treated with posaconazole. Animals Eight dogs with refractory coccidioidomycosis. Methods Retrospective case series. Medical records from Veterinary Specialty Center of Tucson were searched to identify dogs with refractory coccidioidomycosis that were treated with posaconazole. Clinical information and the results of monitoring trough serum posaconazole concentrations were retrieved. Results Eight dogs with refractory coccidioidomycosis were treated with 2.5 to 10 mg/kg per day of posaconazole. Six of 8 dogs recovered or developed clinical remission while administered posaconazole. Thirteen serum concentrations from 8 dogs tested were >1 μg/mL (range, 1.52 to >6 μg/mL) and the drug was well‐tolerated by 7 dogs. One dog required dosage reductions and treatment was ultimately discontinued because of hepatotoxicosis. Conclusions and Clinical Importance Posaconazole should be considered as a treatment option for dogs with refractory coccidioidomycosis. Monitoring of indicators of liver function or injury along with therapeutic drug monitoring is recommended to tailor dosage in the event of hepatic toxicosis.
Collapse
Affiliation(s)
- Lisa F Shubitz
- Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA.,Veterinary Specialty Center of Tucson, Tucson, Arizona, USA
| | | | | | | | - Kate A Worthing
- University of Arizona College of Veterinary Medicine, Oro Valley, Arizona, USA
| |
Collapse
|
42
|
Vu BG, Stamnes MA, Li Y, Rogers PD, Moye-Rowley WS. The Candida glabrata Upc2A transcription factor is a global regulator of antifungal drug resistance pathways. PLoS Genet 2021; 17:e1009582. [PMID: 34591857 PMCID: PMC8509923 DOI: 10.1371/journal.pgen.1009582] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/12/2021] [Accepted: 09/22/2021] [Indexed: 01/15/2023] Open
Abstract
The most commonly used antifungal drugs are the azole compounds, which interfere with biosynthesis of the fungal-specific sterol: ergosterol. The pathogenic yeast Candida glabrata commonly acquires resistance to azole drugs like fluconazole via mutations in a gene encoding a transcription factor called PDR1. These PDR1 mutations lead to overproduction of drug transporter proteins like the ATP-binding cassette transporter Cdr1. In other Candida species, mutant forms of a transcription factor called Upc2 are associated with azole resistance, owing to the important role of this protein in control of expression of genes encoding enzymes involved in the ergosterol biosynthetic pathway. Recently, the C. glabrata Upc2A factor was demonstrated to be required for normal azole resistance, even in the presence of a hyperactive mutant form of PDR1. Using genome-scale approaches, we define the network of genes bound and regulated by Upc2A. By analogy to a previously described hyperactive UPC2 mutation found in Saccharomyces cerevisiae, we generated a similar form of Upc2A in C. glabrata called G898D Upc2A. Analysis of Upc2A genomic binding sites demonstrated that wild-type Upc2A binding to target genes was strongly induced by fluconazole while G898D Upc2A bound similarly, irrespective of drug treatment. Transcriptomic analyses revealed that, in addition to the well-described ERG genes, a large group of genes encoding components of the translational apparatus along with membrane proteins were responsive to Upc2A. These Upc2A-regulated membrane protein-encoding genes are often targets of the Pdr1 transcription factor, demonstrating the high degree of overlap between these two regulatory networks. Finally, we provide evidence that Upc2A impacts the Pdr1-Cdr1 system and also modulates resistance to caspofungin. These studies provide a new perspective of Upc2A as a master regulator of lipid and membrane protein biosynthesis. In the pathogenic yeast Candida glabrata, expression of the genes encoding enzymes in the ergosterol biosynthetic pathway is controlled by the transcription factor Upc2A. C. glabrata has a low intrinsic susceptibility to azole therapy and acquires fluconazole resistance at high frequency. These azole resistant mutants typically contain substitution mutations in a gene encoding the transcription factor Pdr1. Pdr1 does not appear to regulate ergosterol genes and instead induces expression of genes encoding drug transport proteins like CDR1. Here we establish that extensive overlap exists between the regulatory networks defined by Upc2A and Pdr1. Genomic approaches are used to describe the hundreds of genes regulated by Upc2A that far exceed the well-described impact of this factor on genes involved in ergosterol biosynthesis. The overlap between Upc2A and Pdr1 is primarily described by co-regulation of genes encoding membrane transporters like CDR1. We provide evidence that Upc2A impacts the transcriptional control of the FKS1 gene, producing a target of a second major class of antifungal drugs, the echinocandins. Our data are consistent with Upc2A playing a role as a master regulator coordinating the synthesis of membrane structural components, both at the level of lipids and proteins, to produce properly functional biological membranes.
Collapse
Affiliation(s)
- Bao Gia Vu
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yu Li
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - P. David Rogers
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
43
|
Shukla P, Deswal D, Pandit M, Latha N, Mahajan D, Srivastava T, Narula AK. Exploration of novel TOSMIC tethered imidazo[1,2-a]pyridine compounds for the development of potential antifungal drug candidate. Drug Dev Res 2021; 83:525-543. [PMID: 34569640 DOI: 10.1002/ddr.21883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 11/10/2022]
Abstract
New candidates of imidazo[1,2-a]pyridine were designed by combining 2-amino pyridine, TOSMIC and various assorted aldehydes to explore their antioxidant and antifungal potential. The design of these derivatives was based on utilizing the antifungal potential of azoles and TOSMIC moiety. These derivatives were synthesized by adopting multi-component reaction methodology, as it serves as a rapid and efficient tool to target structurally diverse heterocyclic compounds in quantitative yield. The resulting imidazo[1,2-a]pyridine derivatives were structurally verified by 1 HNMR, 13 CNMR, HRMS, and HPLC. The compounds were analyzed for their antioxidant and fluorescent properties and it was observed that compound 15 depicted highest potential. The compounds were evaluated for their antifungal potential to highlight their medical application in the area of Invasive Fungal Infections (IFI). Compound 12 gave the highest antifungal inhibition against Aspergillus fumigatus 3007 and Candida albicans 3018. To elucidate the antifungal mechanism, confocal images of treated fungi were analyzed, which depicted porous nature of fungal membrane. Estimation of fungal membrane sterols by UPLC indicated decrease in ergosterol component of fungal membrane. In silico studies further corroborated with the in vitro results as docking studies depicted interaction of synthesized heterocyclic compounds with amino acids present in the active site of target enzyme (lanosterol 14 alpha demethylase). Absorption, distribution, metabolism, and excretion (ADME) analysis was indicative of drug-likeliness of the synthesized compounds.
Collapse
Affiliation(s)
- Pratibha Shukla
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India.,Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi, India
| | - Deepa Deswal
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi, India
| | - Mansi Pandit
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Narayanan Latha
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Divyank Mahajan
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Tapasya Srivastava
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Anudeep Kumar Narula
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India.,Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi, India
| |
Collapse
|
44
|
Some Aryl-1,2,4-triazol-1-ium Phenacylids in Binary Hydroxyl Solvent Mixtures. Computational and Spectral Study. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Four carbanion monosubstituted p-aryl-1,2,4-triazol-1-ium methylids are subjected to a comparative study between their spectral and quantum-mechanical parameters in order to obtain more information about their structural features in hydroxyl solvents as water and ethanol and also on the nature of electronic absorption transitions from the visible range. The quantum mechanical analysis, made by the Spartan’14 program, established a series of molecular parameters of the studied ylids important for their reactivity and for intermolecular interactions with hydroxyl liquids. An extensive solvatochromic study of 1,2,4-triazol-1-ium ylids is impossible due to their limited solubility in liquids. Binary solvent mixtures of water and ethanol with known solvent parameters from the literature were used for this study. The electronic absorption spectra in binary solvents water and ethanol were used to establish the influence of intermolecular interactions on the spectral characteristics of the studied methylids and also on the composition of their first solvation shell in ternary solutions. The difference between the interaction energies in molecular pairs ylid–water and ylid–ethanol was determined based on the statistical cell model applied to the ternary solutions of the type of ylid + water + ethanol. The obtained values are very small due to the hydroxylic nature of the two solvents.
Collapse
|
45
|
Huang F, Zhou C, Zhang XY, Shen MY, Zhang H, Wang Y, Sun L. Impact of CYP2C19 genotype on voriconazole exposure and effect of voriconazole on the activity of CYP3A in patients with haematological malignancies. Xenobiotica 2021; 51:1199-1206. [PMID: 34402388 DOI: 10.1080/00498254.2021.1969481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Voriconazole (VRC) is a first-line drug for the treatment of invasive fungal infections (IFIs) and an inhibitor of CYP3A activity. The aims of this study are to investigate the influence of related factors on the plasma concentration of voriconazole and the effect of voriconazole on the activity of CYP3A in patients with haematological malignancies.A total of 89 patients received an initial dose of 6 mg/kg followed by 4 mg/kg every 12 h were included in the study. Blood samples were collected before and 2 h after administration for subsequent testing and for the extraction of DNA samples. Voriconazole and voriconazole N-oxide in the plasma were detected by LC-MS/MS. The effect of voriconazole on CYP3A activity was evaluated by the ratio of the endogenous biomarkers 6β-hydroxycortisol and cortisol.During the study period, the overall incidence of adverse reactions was 33.6% (with no deaths). The metabolite type of CYP2C19 and combined use of CYP2C19 enzyme inhibitors both had a significant impact on voriconazole exposure. Voriconazole has a long-lasting and potent inhibitory effect on CYP3A activity. The exposure of CYP3A substrate in combination with metabolic enzyme inhibitors voriconazole could increase. Therefore, the combination uses with voriconazole need to be considered carefully and assessed adequately.
Collapse
Affiliation(s)
- Fengru Huang
- Research Division of Clinical Pharmacology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Chen Zhou
- Research Division of Clinical Pharmacology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Xiao-Yan Zhang
- Department of Hematology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Miss Ye Shen
- Research Division of Clinical Pharmacology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Hongwen Zhang
- Research Division of Clinical Pharmacology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yongqing Wang
- Research Division of Clinical Pharmacology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Luning Sun
- Research Division of Clinical Pharmacology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| |
Collapse
|
46
|
Seguí P, Aguilera-Correa JJ, Domínguez-Jurado E, Sánchez-López CM, Pérez-Tanoira R, Ocaña AV, Castro-Osma JA, Esteban J, Marcilla A, Alonso-Moreno C, Pérez-Martínez FC, Molina-Alarcón M. A novel bis(pyrazolyl)methane compound as a potential agent against Gram-positive bacteria. Sci Rep 2021; 11:16306. [PMID: 34381091 PMCID: PMC8357914 DOI: 10.1038/s41598-021-95609-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023] Open
Abstract
This study was designed to propose alternative therapeutic compounds to fight against bacterial pathogens. Thus, a library of nitrogen-based compounds bis(triazolyl)methane (1T–7T) and bis(pyrazolyl)methane (1P–11P) was synthesised following previously reported methodologies and their antibacterial activity was tested using the collection strains of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. Moreover, the novel compound 2P was fully characterized by IR, UV–Vis and NMR spectroscopy. To evaluate antibacterial activity, minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), minimum biofilm inhibitory concentrations (MBICs), and minimum biofilm eradication concentrations (MBECs) assays were carried out at different concentrations (2–2000 µg/mL). The MTT assay and Resazurin viability assays were performed in both human liver carcinoma HepG2 and human colorectal adenocarcinoma Caco-2 cell lines at 48 h. Of all the synthesised compounds, 2P had an inhibitory effect on Gram-positive strains, especially against S. aureus. The MIC and MBC of 2P were 62.5 and 2000 µg/mL against S. aureus, and 250 and 2000 µg/mL against E. faecalis, respectively. However, these values were > 2000 µg/mL against E. coli and P. aeruginosa. In addition, the MBICs and MBECs of 2P against S. aureus were 125 and > 2000 µg/mL, respectively, whereas these values were > 2000 µg/mL against E. faecalis, E. coli, and P. aeruginosa. On the other hand, concentrations up to 250 µg/mL of 2P were non-toxic doses for eukaryotic cell cultures. Thus, according to the obtained results, the 2P nitrogen-based compound showed a promising anti-Gram-positive effect (especially against S. aureus) both on planktonic state and biofilm, at non-toxic concentrations.
Collapse
Affiliation(s)
- Pedro Seguí
- Department of Otorhinolaryngology, Complejo Hospitalario Universitario, 02006, Albacete, Spain.,Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, 02001, Albacete, Spain
| | | | - Elena Domínguez-Jurado
- NanoCRIB Unit, Centro Regional de Investigaciones Biomédicas, 02008, Albacete, Spain.,School of Pharmacy, University of Castilla-La Mancha, 02008, Albacete, Spain
| | - Christian M Sánchez-López
- Department of Farmàcia i Tecnologia Farmacèutica i Parasitologia, University of Valencia, Burjassot, 46100, Valencia, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-Universitat de València, 46026, Valencia, Spain
| | - Ramón Pérez-Tanoira
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Madrid, Spain.,Biomedicine and Biotechnology Department, School of Medicine, University of Alcalá de Henares, Madrid, Spain
| | - Ana V Ocaña
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, 02001, Albacete, Spain
| | - José A Castro-Osma
- NanoCRIB Unit, Centro Regional de Investigaciones Biomédicas, 02008, Albacete, Spain.,School of Pharmacy, University of Castilla-La Mancha, 02008, Albacete, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundacion Jimenez Diaz-UAM, 28040, Madrid, Spain
| | - Antonio Marcilla
- Department of Farmàcia i Tecnologia Farmacèutica i Parasitologia, University of Valencia, Burjassot, 46100, Valencia, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-Universitat de València, 46026, Valencia, Spain
| | - Carlos Alonso-Moreno
- NanoCRIB Unit, Centro Regional de Investigaciones Biomédicas, 02008, Albacete, Spain.,School of Pharmacy, University of Castilla-La Mancha, 02008, Albacete, Spain
| | - Francisco C Pérez-Martínez
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, 02001, Albacete, Spain.
| | - Milagros Molina-Alarcón
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, 02001, Albacete, Spain.,Department of Nursing, University of Castilla-La Mancha, 02071, Albacete, Spain
| |
Collapse
|
47
|
Dahiya S, Sharma N, Punia A, Choudhary P, Gulia P, Parmar VS, Chhillar AK. Antimycotic Drugs and their Mechanisms of Resistance to Candida Species. Curr Drug Targets 2021; 23:116-125. [PMID: 34551694 DOI: 10.2174/1389450122666210719124143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Fungal infections have shown an upsurge in recent decades, which is mainly because of the increasing number of immunocompromised patients and the occurrence of invasive candidiasis has been found to be 7-15 fold greater than that of invasive aspergillosis. The genus Candida comprises more than 150 distinct species, however, only a few of them are found to be pathogenic to humans. Mortality rates of Candida species are found to be around 45% and the reasons for this intensified mortality are inefficient diagnostic techniques and unfitting initial treatment strategies. There are only a few antifungal drug classes that are employed for the remedy of invasive fungal infections. which include azoles, polyenes, echinocandins, and pyrimidine analogs. During the last 2-3 decades, the usage of antifungal drugs has increased several folds due to which the reports of escalating antifungal drug resistance have also been recorded. The resistance is mostly to the triazole- based compounds. Due to the occurrence of antifungal drug resistance, the success rates of treatment have been reduced as well as major changes have been observed in the frequency of fungal infections. In this review, we have summarized the major molecular mechanisms for the development of antifungal drug resistance.
Collapse
Affiliation(s)
- Sweety Dahiya
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Namita Sharma
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Aruna Punia
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Pooja Choudhary
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Prity Gulia
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Virinder S Parmar
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, 1638 Bedford Avenue, Brooklyn, NY 11225. India
| | - Anil K Chhillar
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| |
Collapse
|
48
|
Dorohoi DO, Dimitriu DG, Dulcescu-Oprea MM, Morosanu AC, Puica-Melniciuc N, Ardelean E, Gritco-Todirascu A, Cheptea C. Solvatochromic Study of Two Carbanion Monosubstituted 4-Tolyl-1,2,4-triazol-1-ium Phenacylids in Binary Hydroxyl Solvent Mixtures. Molecules 2021; 26:3910. [PMID: 34206829 PMCID: PMC8271593 DOI: 10.3390/molecules26133910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/02/2023] Open
Abstract
Two 4-tolyl-1,2,4-triazol-1-ium methylids, namely 4-tolyl-1,2,4-triazol-1-ium-phenacylid and 4-tolyl-1,2,4-triazol-1-ium-4'-nitro-phenacylid, are studied from solvatochromic point of view in binary solvent mixtures of water with ethanol and water with methanol. The contributions (expressed in percent) of the universal and specific interactions are separated from the spectral shifts recorded in the visible range for each composition of the binary solvent mixture. The essential role of the orientation and induction interactions in the studied solutions was demonstrated. Based on the statistic cell model of the binary solvent mixture solutions, the difference between the formation energies of ylid-water and ylid-alcohol complexes is estimated. The composition of the ylid's first solvation shell was also established using the model of the binary solvent mixture solutions. The results obtained from the statistical cell model were compared with those obtained by using the Suppan's model, resulting a good agreement.
Collapse
Affiliation(s)
- Dana Ortansa Dorohoi
- Faculty of Physics, Alexandru Ioan Cuza University, 700506 Iasi, Romania; (D.O.D.); (M.M.D.-O.); (A.C.M.); (A.G.-T.)
| | - Dan-Gheorghe Dimitriu
- Faculty of Physics, Alexandru Ioan Cuza University, 700506 Iasi, Romania; (D.O.D.); (M.M.D.-O.); (A.C.M.); (A.G.-T.)
| | - Mihaela Maria Dulcescu-Oprea
- Faculty of Physics, Alexandru Ioan Cuza University, 700506 Iasi, Romania; (D.O.D.); (M.M.D.-O.); (A.C.M.); (A.G.-T.)
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Ana Cezarina Morosanu
- Faculty of Physics, Alexandru Ioan Cuza University, 700506 Iasi, Romania; (D.O.D.); (M.M.D.-O.); (A.C.M.); (A.G.-T.)
| | - Nicoleta Puica-Melniciuc
- Faculty of Orthodox Theology, Alexandru Ioan Cuza University, 700066 Iasi, Romania; (N.P.-M.); (E.A.)
| | - Elena Ardelean
- Faculty of Orthodox Theology, Alexandru Ioan Cuza University, 700066 Iasi, Romania; (N.P.-M.); (E.A.)
| | - Antonina Gritco-Todirascu
- Faculty of Physics, Alexandru Ioan Cuza University, 700506 Iasi, Romania; (D.O.D.); (M.M.D.-O.); (A.C.M.); (A.G.-T.)
| | - Corina Cheptea
- Department of Biomedical Sciences, Faculty of Biomedical Engineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700454 Iasi, Romania;
| |
Collapse
|
49
|
Ferreira PS, Victorelli FD, Rodero CF, Fortunato GC, Araújo VHS, Fonseca-Santos B, Bauab TM, Van Dijck P, Chorilli M. p-Coumaric acid loaded into liquid crystalline systems as a novel strategy to the treatment of vulvovaginal candidiasis. Int J Pharm 2021; 603:120658. [PMID: 33964336 DOI: 10.1016/j.ijpharm.2021.120658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 12/30/2022]
Abstract
Vulvovaginal candidiasis (VVC) is an extremely common type of vaginal infection, which is mainly caused by Candida albicans. However, non-albicans Candida species are frequently more resistant to conventional antifungal agents and can represent up to 30% of cases. Due to side effects and increasing antifungal resistance presented by standard therapies, phenolic compounds, such as p-coumaric acid (p-CA), have been studied as molecules from natural sources with potential antifungal activity. p-CA is a poorly water-soluble compound, thus loading it into liquid crystals (LCs) may increase its solubility and effectiveness on the vaginal mucosa. Thereby, here we propose the development of mucoadhesive liquid crystalline systems with controlled release of p-CA, for the local treatment of VVC. Developed LCs consisted of fixed oily and aqueous phases (oleic acid and cholesterol (5:1) and poloxamer dispersion 16%, respectively), changing only the surfactant phase components (triethanolamine oleate (TEA-Oleate) or triethanolamine (TEA), the latter producing TEA-Oleate molecules when mixed with oleic acid). Systems were also diluted in artificial vaginal mucus (1:1 ratio) to mimic the vaginal environment and verify possible structural changes on formulations upon exposure to the mucosa. From the characterization assays, p-CA loaded TEA-Oleate systems presented mucoadhesive profile, liquid crystalline mesophases, well-organized structures and pseudoplastic behaviour, which are desirable parameters for topical formulations. Moreover, they were able to control the release of p-CA throughout the 12 h assay, as well as decrease its permeation into the vaginal mucosa. p-CA showed antifungal activity in vitro against reference strains of C. albicans (SC5314), C. glabrata (ATCC 2001) and C. krusei (ATCC 6258), and exhibited higher eradication of mature biofilms than amphotericin B and fluconazole. In vivo experiments demonstrated that the formulations reduced the presence of filamentous forms in the vaginal lavages and provided an improvement in swelling and redness present in the mice vaginal regions. Altogether, here we demonstrated the potential and feasibility of using p-CA loaded liquid crystalline systems as a mucoadhesive drug delivery system for topical treatment of VVC.
Collapse
Affiliation(s)
- P S Ferreira
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| | - F D Victorelli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - C F Rodero
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - G C Fortunato
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - V H S Araújo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - B Fonseca-Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - T M Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - P Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium; VIB-KU Leuven Center for Microbiology, Flanders, Belgium
| | - M Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
50
|
An electrochemical multicomponent [3 + 1 + 1] annulations to synthesize polysubstituted 1,2,4-triazoles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|