1
|
Stutz J, Casutt S, Spengler CM. Respiratory muscle endurance training improves exercise performance but does not affect resting blood pressure and sleep in healthy active elderly. Eur J Appl Physiol 2022; 122:2515-2531. [PMID: 36018510 PMCID: PMC9613745 DOI: 10.1007/s00421-022-05024-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
Purpose Ageing is associated with increased blood pressure (BP), reduced sleep, decreased pulmonary function and exercise capacity. The main purpose of this study was to test whether respiratory muscle endurance training (RMET) improves these parameters. Methods Twenty-four active normotensive and prehypertensive participants (age: 65.8 years) were randomized and balanced to receive either RMET (N = 12) or placebo (PLA, N = 12). RMET consisted of 30 min of volitional normocapnic hyperpnea at 60% of maximal voluntary ventilation while PLA consisted of 1 inhalation day−1 of a lactose powder. Both interventions were performed on 4–5 days week−1 for 4–5 weeks. Before and after the intervention, resting BP, pulmonary function, time to exhaustion in an incremental respiratory muscle test (incRMET), an incremental treadmill test (IT) and in a constant-load treadmill test (CLT) at 80% of peak oxygen consumption, balance, sleep at home, and body composition were assessed. Data was analyzed with 2 × 2 mixed ANOVAs. Results Compared to PLA, there was no change in resting BP (independent of initial resting BP), pulmonary function, IT performance, sleep, body composition or balance (all p > 0.05). Performance significantly increased in the incRMET (+ 6.3 min) and the CLT (+ 3.2 min), resulting in significant interaction effects (p < 0.05). Conclusion In the elderly population, RMET might be used to improve respiratory and whole body endurance performance either as an adjunct to physical exercise training or as a replacement thereof for people not being able to intensively exercise even if no change in BP or sleep may be expected.
Collapse
Affiliation(s)
- Jan Stutz
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Selina Casutt
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Vollsæter M, Stensrud T, Maat R, Halvorsen T, Røksund OD, Sandnes A, Clemm H. Exercise Related Respiratory Problems in the Young-Is It Exercise-Induced Bronchoconstriction or Laryngeal Obstruction? Front Pediatr 2021; 9:800073. [PMID: 35047465 PMCID: PMC8762363 DOI: 10.3389/fped.2021.800073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Complaints of breathlessness during heavy exercise is common in children and adolescents, and represent expressions of a subjective feeling that may be difficult to verify and to link with specific diagnoses through objective tests. Exercise-induced asthma and exercise-induced laryngeal obstruction are two common medical causes of breathing difficulities in children and adolescents that can be challenging to distinguish between, based only on the complaints presented by patients. However, by applying a systematic clinical approach that includes rational use of tests, both conditions can usually be diagnosed reliably. In this invited mini-review, we suggest an approach we find feasible in our everyday clinical work.
Collapse
Affiliation(s)
- Maria Vollsæter
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Section for Paediatrics, University of Bergen, Bergen, Norway
| | - Trine Stensrud
- Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Robert Maat
- Department of Otorhinolaryngology, Saxenburgh Medical Center, Hardenberg, Netherlands
| | - Thomas Halvorsen
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Section for Paediatrics, University of Bergen, Bergen, Norway.,Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Ola Drange Røksund
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway.,Faculty of Health and Social Sciences, Bergen University College, Bergen, Norway
| | - Astrid Sandnes
- Department of Internal Medicine, Innlandet Hospital Trust, Gjøvik, Norway
| | - Hege Clemm
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Section for Paediatrics, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Van Hollebeke M, Gosselink R, Langer D. Training Specificity of Inspiratory Muscle Training Methods: A Randomized Trial. Front Physiol 2020; 11:576595. [PMID: 33343384 PMCID: PMC7744620 DOI: 10.3389/fphys.2020.576595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/05/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction Inspiratory muscle training (IMT) protocols are typically performed using pressure threshold loading with inspirations initiated from residual volume (RV). We aimed to compare effects of three different IMT protocols on maximal inspiratory pressures (PImax) and maximal inspiratory flow (V̇Imax) at three different lung volumes. We hypothesized that threshold loading performed from functional residual capacity (FRC) or tapered flow resistive loading (initiated from RV) would improve inspiratory muscle function over a larger range of lung volumes in comparison with the standard protocol. Methods 48 healthy volunteers (42% male, age: 48 ± 9 years, PImax: 110 ± 28%pred, [mean ± SD]) were randomly assigned to perform three daily IMT sessions of pressure threshold loading (either initiated from RV or from FRC) or tapered flow resistive loading (initiated from RV) for 4 weeks. Sessions consisted of 30 breaths against the highest tolerable load. Before and after the training period, PImax was measured at RV, FRC, and midway between FRC and total lung capacity (1/2 IC). V̇Imax was measured at the same lung volumes against a range of external threshold loads. Results While PImax increased significantly at RV and at FRC in the group performing the standard training protocol (pressure threshold loading from RV), it increased significantly at all lung volumes in the two other training groups (all p < 0.05). No significant changes in V̇Imax were observed in the group performing the standard protocol. Increases of V̇Imax were significantly larger at all lung volumes after tapered flow resistive loading, and at higher lung volumes (i.e., FRC and 1/2 IC) after pressure threshold loading from FRC in comparison with the standard protocol (all p < 0.05). Conclusion Only training with tapered flow resistive loading and pressure threshold loading from functional residual capacity resulted in consistent improvements in respiratory muscle function at higher lung volumes, whereas improvements after the standard protocol (pressure threshold loading from residual volume) were restricted to gains in PImax at lower lung volumes. Further research is warranted to investigate whether these results can be confirmed in larger samples of both healthy subjects and patients.
Collapse
Affiliation(s)
- Marine Van Hollebeke
- KU Leuven, Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
| | - Rik Gosselink
- KU Leuven, Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
| | - Daniel Langer
- KU Leuven, Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
| |
Collapse
|
4
|
Beltrami FG, Mzee D, Spengler CM. No Evidence That Hyperpnea-Based Respiratory Muscle Training Affects Indexes of Cardiovascular Health in Young Healthy Adults. Front Physiol 2020; 11:530218. [PMID: 33391004 PMCID: PMC7773763 DOI: 10.3389/fphys.2020.530218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/20/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction The chronic effects of respiratory muscle training (RMT) on the cardiovascular system remain unclear. This investigation tested to which degree a single sessions of RMT with or without added vibration, which could enhance peripheral blood flow and vascular response, or a 4-week RMT program could result in changes in pulse wave velocity (PWV), blood pressure (systolic, SBP; diastolic, DBP) and other markers of cardiovascular health. Methods Sixteen young and healthy participants (8 m/8f) performed 15 min of either continuous normocapnic hyperpnea (RMET), sprint-interval-type hyperpnea (RMSIT) or a control session (quiet sitting). Sessions were performed once with and once without passive vibration of the lower limbs. To assess training-induced adaptations, thirty-four young and healthy participants (17 m/17f) were measured before and after 4 weeks (three weekly sessions) of RMET (n = 13, 30-min sessions of normocapnic hyperpnea), RMSIT [n = 11, 6 × 1 min (1 min break) normocapnic hyperpnea with added resistance] or placebo (n = 10). Results SBP was elevated from baseline at 5 min after each RMT session, but returned to baseline levels after 15 min, whereas DBP was unchanged from baseline following RMT. Carotid-femoral PWV (PWVCF) was elevated at 5 and 15 min after RMT compared to baseline (main effect of time, P = 0.001), whereas no changes were seen for carotid-radial PWV (PWVCR) or the PWVCF/PWVCR ratio. Vibration had no effects in any of the interventions. Following the 4-week training period, no differences from the placebo group were seen for SBP (P = 0.686), DBP (P = 0.233), PWVCF (P = 0.844), PWVCR (P = 0.815) or the PWVCF/PWVCR ratio (P = 0.389). Discussion/Conclusion Although 15 min of RMT sessions elicited transient increases in PWVCF and SBP, no changes were detected following 4 weeks of either RMET or RMSIT. Adding passive vibration of the lower limbs during RMT sessions did not provide additional value to the session with regards to vascular responses.
Collapse
Affiliation(s)
- Fernando G Beltrami
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - David Mzee
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
MAIEREAN AD, TONCA C, PERNE Mirela Georgiana, DOGARU G, RAJNOVEANU R, CHIS AF, MOTOC NS, BORDEA RI. Music, A “Body-Mind Medicine” In Rehabilitation Programs of Patients with Chronic Obstructive Pulmonary Disease. BALNEO RESEARCH JOURNAL 2020. [DOI: 10.12680/balneo.2020.375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by dyspnea and chronic cough. The main risk factor is cigarette smoking, but there are other ones implicated in the COPD etiology such as air pollution, childhood asthma, aging, chemical exposure, dietary factors, and genetic predisposition. Besides, COPD is associated with several comorbidities that influence prognostic and management, like asthma, lung cancer, obstructive sleep apnea, cardiovascular disease, metabolic syndrome, and depression or anxiety. The management is multidisciplinary and its role is to ease symptoms, prevent complications, slow disease progression, and improve the quality of life. In the last years, many alternative techniques have been implemented such as speleotherapy, halotherapy, muscular training, neuromuscular electrostimulation, acupuncture, thermotherapy, and music therapy. From those, music therapy has become a form of “mind-body medicine” indispensable in rehabilitation programs, whether used actively or passively, and has gained a lot of interest in alternative medicine.
Keywords: COPD, music therapy, alternative medicine,
Collapse
Affiliation(s)
| | - Claudia TONCA
- Clinical Hospital of Pneumology “Leon Daniello” Cluj-Napoca, Romania
| | | | - Gabriela DOGARU
- “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Ana Florica CHIS
- “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | |
Collapse
|
6
|
Roldán A, Cordellat A, Monteagudo P, García-Lucerga C, Blasco-Lafarga NM, Gomez-Cabrera MC, Blasco-Lafarga C. Beneficial Effects of Inspiratory Muscle Training Combined With Multicomponent Training in Elderly Active Women. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2019; 90:547-554. [PMID: 31397649 DOI: 10.1080/02701367.2019.1633009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 06/08/2019] [Indexed: 06/10/2023]
Abstract
Purpose: This study aims to analyze changes in Maximum Inspiratory Pressure (MIP), lung function, cardiorespiratory fitness, and blood pressure, in 10 healthy active elderly women, following 7 weeks of inspiratory muscle training (IMT) combined with a multicomponent training program (MCTP). The association among these health parameters, their changes after training (deltas), and the influence of MIP at baseline (MIPpre) are also considered. Methods: IMT involved 30 inspirations at 50% of the MIP, twice daily, 7 days a week, while MCTP was 1 hr, twice a week. MIP, lung function (FVC, FEV1, FEV1/FVC, FEF25-75%, PEF), 6MWT, and blood pressure (SBP, DBP), jointly with body composition, were assessed before and after the intervention. Results: Seven weeks were enough to improved MIP (p = .019; d = 1.397), 6MWT (p = .012; d = .832), SBP (p = .003; d = 1.035) and DBP (p = .024; d = .848). Despite the high physical fitness (VO2 peak: M = 23.38, SD = 3.39 ml·min·Kg-1), MIPpre was low (M = 39.00, SD = 7.63 cmH2O) and displayed a significant negative correlation with ΔMIPpre-post (r = -.821; p < .004), showing that women who started the intervention with lower MIP achieved higher improvements in inspiratory muscle strength after training. Conclusions: No significant changes in spirometric parameters may signal that lung function is independent of early improvements in inspiratory muscles and cardiorespiratory fitness. Absence of correlation between physical fitness and respiratory outcomes suggests that being fit does not ensure cardiorespiratory health in active elderly women, so IMT might be beneficial and should supplement the MCTP in this population.
Collapse
|
7
|
Faghy MA, Brown PI. Functional training of the inspiratory muscles improves load carriage performance. ERGONOMICS 2019; 62:1439-1449. [PMID: 31389759 DOI: 10.1080/00140139.2019.1652352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Inspiratory Muscle Training (IMT) whilst adopting body positions that mimic exercise (functional IMT; IMTF) improves running performance above traditional IMT methods in unloaded exercise. We investigated the effect of IMTF during load carriage tasks. Seventeen males completed 60 min walking at 6.5 km·h-1 followed by a 2.4 km load carriage time-trial (LCTT) whilst wearing a 25 kg backpack. Trials were completed at baseline; post 4 weeks IMT (consisting of 30 breaths twice daily at 50% of maximum inspiratory pressure) and again following either 4 weeks IMTF (comprising four inspiratory loaded core exercises) or maintenance IMT (IMTCON). Baseline LCTT was 15.93 ± 2.30 min and was reduced to 14.73 ± 2.40 min (mean reduction 1.19 ± 0.83 min, p < 0.01) after IMT. Following phase two, LCTT increased in IMTF only (13.59 ± 2.33 min, p < 0.05) and was unchanged in post-IMTCON. Performance was increased following IMTF, providing an additional ergogenic effect beyond IMT alone. Practitioner Summary: We confirmed the ergogenic benefit of Inspiratory Muscle Training (IMT) upon load carriage performance. Furthermore, we demonstrate that functional IMT methods provide a greater performance benefit during exercise with thoracic loads. Abbreviations: [Lac-]B: blood lactate; FEV1: forced expiratory volume in one second; FEV1/FVC: forced expiratory volume in one second/forced vital capacity ratio; FVC: forced vital capacity; HR: heart rate; IMT: inspiratory muscle training; IMTCON: inspiratory muscle training maintenance; IMTF: functional inspiratory muscle training; LC: load carriage; LCTT: load carriage time trial; Pdi: transdiaphragmatic pressure; PEF: peak expiratory flow; PEmax: maximum expiratory mouth pressure; PImax: maximum inspiratory mouth pressure; RPE: rating of perceived exertion; RPEbreating: rating of perceived exertion for the breathing; RPEleg: rating of perceived exertion for the legs; SEPT: sport-specific endurance plank test; V̇ O2: oxygen consumption; V̇ O2peak: peak oxygen consumption.
Collapse
Affiliation(s)
- Mark A Faghy
- Human Science Research Centre, University of Derby , Derby , UK
| | - Peter I Brown
- English Institute of Sport, High Performance Centre, Loughborough University , Manchester , United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
8
|
Akay MF, Abut F, Özçiloğlu M, Heil D. Identifying the discriminative predictors of upper body power of cross-country skiers using support vector machines combined with feature selection. Neural Comput Appl 2015. [DOI: 10.1007/s00521-015-1986-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|