1
|
Chavarria K, Batista J, Saltonstall K. Widespread occurrence of fecal indicator bacteria in oligotrophic tropical streams. Are common culture-based coliform tests appropriate? PeerJ 2024; 12:e18007. [PMID: 39253603 PMCID: PMC11382651 DOI: 10.7717/peerj.18007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Monitoring of stream water quality is a key element of water resource management worldwide, but methods that are commonly used in temperate habitats may not be appropriate in humid tropical systems. We assessed the influence of four land uses on microbial water quality in 21 streams in the Panama Canal Watershed over a one-year period, using a common culture-based fecal indicator test and 16S rDNA metabarcoding. Each stream was located within one of four land uses: mature forest, secondary forest, silvopasture, and traditional cattle pasture. Culturing detected total coliforms and Escherichia coli across all sites but found no significant differences in concentrations between land uses. However, 16S rDNA metabarcoding revealed variability in the abundance of coliforms across land uses and several genera that can cause false positives in culture-based tests. Our results indicate that culture-based fecal indicator bacteria tests targeting coliforms may be poor indicators of fecal contamination in Neotropical oligotrophic streams and suggest that tests targeting members of the Bacteroidales would provide a more reliable indication of fecal contamination.
Collapse
Affiliation(s)
- Karina Chavarria
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Civil and Environmental Engineering, University of Massachusetts at Amherst, Amherst, MA, United States of America
| | - Jorge Batista
- Smithsonian Tropical Research Institute, Panama City, Panama
| | | |
Collapse
|
2
|
Álvarez-Chávez E, Godbout S, Généreux M, Côté C, Rousseau AN, Fournel S. Treatment of cow manure from exercise pens: A laboratory-scale study of the effect of air injection on conventional and alternative biofilters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119637. [PMID: 38000274 DOI: 10.1016/j.jenvman.2023.119637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Woodchips in stand-off pads for wintering cows have been applied in countries like Ireland and New Zealand. Their primary role is to protect soils by effectively filtering nutrients during wet conditions, while ensuring a healthy and comfortable environment for the cows. The stand-off pad concept has the potential to be adopted in Canada to provide year-long outdoor access to tie-stall dairy cows. The objective of this study was to evaluate the effect of alternative filtering materials and bed aeration under controlled laboratory conditions. Twelve biofilter columns (0.3 m in diameter and 1-m high) were installed in 12 environmentally-controlled chambers (1.2-m wide by 2.4-m long), and divided into four treatments: a bed of conventional woodchips or an alternative mix of organic materials (sphagnum peat moss, woodchips and biochar) with and without aeration (flux rate set at 0.6 m3/min/m2). Approximately 0.6 L of semi-synthetic dairy manure and 1 L of tap water were poured on the biofilters during two experimental periods of 4 weeks, simulating the effect of either winter or summer conditions (room temperature below or over 10 °C) on the retention of nutrients and fecal bacteria. Results showed that the alternative biofilters under both summer and winter conditions were more efficient in removing COD, SS, TN, and NO3-N than conventional biofilters (maximum efficiencies of 97.6%, 99.7%, 96.4%, and 98.4%, respectively). Similarly for E. coli, they achieved a minimum concentration of 1.8 Log10 CFU/100 ml. Conventional biofilters were more efficient for PO4-P removal with a maximum efficiency of 88.2%. Aeration did not have any significant effect under the tested temperature conditions. Additional factors such as media adaptation time as well as aeration flow during this period should be considered.
Collapse
Affiliation(s)
- Elizabeth Álvarez-Chávez
- Département des sols et de génie agroalimentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| | - Stéphane Godbout
- Research and Development Institute for the Agri-Environment (IRDA), Quebec City, Quebec, G1P 3W8, Canada.
| | - Mylène Généreux
- Research and Development Institute for the Agri-Environment (IRDA), Quebec City, Quebec, G1P 3W8, Canada.
| | - Caroline Côté
- Research and Development Institute for the Agri-Environment (IRDA), Quebec City, Quebec, G1P 3W8, Canada.
| | - Alain N Rousseau
- INRS-ETE/Institut National de la Recherche Scientifique - Eau Terre Environnement, 490 rue de la Couronne, Québec City, QC, G1K 9A9, Canada.
| | - Sébastien Fournel
- Département des sols et de génie agroalimentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
3
|
Shi J, Chi H, Cao A, Song Y, Zhu M, Zhang L, Xu F, Huang J. Development of IMBs-qPCR detection method for Yersinia enterocolitica based on the foxA gene. Arch Microbiol 2021; 203:4653-4662. [PMID: 34173855 DOI: 10.1007/s00203-021-02459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022]
Abstract
Yersinia enterocolitica is an important zoonotic pathogen, which seriously endangers food-safety risk. In this study, the recombinant outer membrane protein OmpF and its antibody were prepared and coupled with immunomagnetic beads (IMBs) to capture Y. enterocolitica in food samples, combining the quantitative PCR detection with primers of virulence factor gene foxA for Yersinia enterocolitica contamination. The results showed that the capture efficiency of approximately 80% using anti-OmpF antibody-immunomagnetic beads and linearly dependent capture under 101-105 CFU/mL Y. enterocolitica compared with less than 10% capture of other bacteria. The detection limit of 64 CFU/mL was obtained based on foxA gene PCR detection combined with capture of the anti-OmpF antibody-immunomagnetic beads to detect Yersinia enterocolitica in artificially contaminated milk and pork samples. Compared to the culture method, the developed IMBs-qPCR method has higher consistency, was less time consuming, which taken together provides an effective alternative method for rapid detection of Y. enterocolitica in food.
Collapse
Affiliation(s)
- Jingxuan Shi
- School of Life Sciences, Tianjin University, China. No. 92, Weijin road, Nankai District, Tianjin, 300072, China
| | - Heng Chi
- School of Life Sciences, Tianjin University, China. No. 92, Weijin road, Nankai District, Tianjin, 300072, China
| | - Aiping Cao
- School of Life Sciences, Tianjin University, China. No. 92, Weijin road, Nankai District, Tianjin, 300072, China
| | - Yinna Song
- School of Life Sciences, Tianjin University, China. No. 92, Weijin road, Nankai District, Tianjin, 300072, China
| | - Min Zhu
- School of Life Sciences, Tianjin University, China. No. 92, Weijin road, Nankai District, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, China. No. 92, Weijin road, Nankai District, Tianjin, 300072, China
| | - Fuzhou Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, 100097, Beijing, People's Republic of China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, China. No. 92, Weijin road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
4
|
Xie X, Liu Z. Simultaneous enumeration of Cronobacter sakazakii and Staphylococcus aureus in powdered infant foods through duplex TaqMan real-time PCR. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Sarengaowa, Hu W, Feng K, Jiang A, Xiu Z, Lao Y, Li Y, Long Y. An in situ-Synthesized Gene Chip for the Detection of Food-Borne Pathogens on Fresh-Cut Cantaloupe and Lettuce. Front Microbiol 2020; 10:3089. [PMID: 32117079 PMCID: PMC7012807 DOI: 10.3389/fmicb.2019.03089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/20/2019] [Indexed: 02/04/2023] Open
Abstract
Fresh foods are vulnerable to foodborne pathogens which cause foodborne illness and endanger people's life and safety. The rapid detection of foodborne pathogens is crucial for food safety surveillance. An in situ-synthesized gene chip for the detection of foodborne pathogens on fresh-cut fruits and vegetables was developed. The target genes were identified and screened by comparing the specific sequences of Salmonella Typhimurium, Vibrio parahemolyticus, Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli O157:H7 from the National Center for Biotechnology Information database. Tiling array probes were designed to target selected genes in an optimized hybridization system. A total of 141 specific probes were selected from 3,227 hybridization probes, comprising 26 L. monocytogenes, 24 S. aureus, 25 E. coli O157:H7, 20 Salmonella Typhimurium, and 46 V. parahemolyticus probes that are unique to this study. The optimized assay had strong amplification signals and high accuracy. The detection limit for the five target pathogens on fresh-cut cantaloupe and lettuce was approximately 3 log cfu/g without culturing and with a detection time of 24 h. The detection technology established in this study can rapidly detect and monitor the foodborne pathogens on fresh-cut fruits and vegetables throughout the logistical distribution chain, i.e., processing, cleaning, fresh-cutting, packaging, storage, transport, and sale, and represents a valuable technology that support the safety of fresh agricultural products.
Collapse
Affiliation(s)
- Sarengaowa
- School of Bioengineering, Dalian University of Technology, Dalian, China
- College of Life Science, Dalian Minzu University, Dalian, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Aili Jiang
- College of Life Science, Dalian Minzu University, Dalian, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ying Lao
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Yuanzheng Li
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Ya Long
- College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
6
|
Liu Y, Cao Y, Wang T, Dong Q, Li J, Niu C. Detection of 12 Common Food-Borne Bacterial Pathogens by TaqMan Real-Time PCR Using a Single Set of Reaction Conditions. Front Microbiol 2019; 10:222. [PMID: 30814987 PMCID: PMC6381072 DOI: 10.3389/fmicb.2019.00222] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/28/2019] [Indexed: 01/21/2023] Open
Abstract
Food safety has become an important public health issue worldwide. However, conventional methods for detection of food-borne pathogens are complicated, and labor-intensive. Moreover, the sensitivity is often low, and it is difficult to achieve high-throughput detection. This study developed a TaqMan real-time polymerase chain reaction (PCR) assay for the simultaneous detection and quantification of 12 common pathogens in a single reaction, including Escherichia coli O157:H7, Listeria monocytogenes/ivanovii, Salmonella enterica, Vibrio parahaemolyticus, β-streptococcus hemolyticus, Yersinia enterocolitica, Enterococcus faecalis, Shigella spp., Proteus mirabilis, Vibrio fluvialis, Staphylococcus aureus, and Campylobacter jejuni in food and drinking water. Based on published sequence data, specific primers, and fluorescently-labeled hybridization probes were designed targeting based on the virulence genes of the 12 pathogens, and these primers and probes were optimized to achieve consistent reaction conditions. The assay was evaluated using 106 pure bacterial culture strains. There was no cross-reaction among the different pathogens. The analytical sensitivity was 1 copy/μL for E. coli O157:H7, L. monocytogenes/ivanovii, β-streptococcus hemolyticus, Shigella spp., P. mirabilis, and V. fluvialis, 10 copies/μL for S. enterica, V. parahaemolyticus, Y. enterocolitica, E. faecalis, S. aureus, and C. jejuni, respectively. The limit of detection (LOD) was 296, 500, 177, 56, 960, 830, 625, 520, 573, 161, 875, and 495 CFU/mL for E. coli O157:H7, L. monocytogenes/ivanovii, S. enterica, V. parahaemolyticus, β-streptococcus hemolyticus, Y. enterocolitica, E. faecalis, Shigella spp., P. mirabilis, V. fluvialis, S. aureus, and C. jejuni, respectively. The limit of detection for the assay in meat samples was 103 CFU/g for V. parahaemolyticus and 104 CFU/g for other 11 strains. Together, these results indicate that the optimized TaqMan real-time PCR assay will be useful for routine detection of pathogenic bacteria due to its rapid analysis, low cost, high-throughput, high specificity, and sensitivity.
Collapse
Affiliation(s)
- Ying Liu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yang Cao
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Tao Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Qingyang Dong
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Junwen Li
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chao Niu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|