1
|
Zhao F, Zhang X, Xu Z, Feng C, Pan W, Lu L, Luo W. Review of hydraulic conditions optimization for constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122377. [PMID: 39243655 DOI: 10.1016/j.jenvman.2024.122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Hydraulic conditions exert a comprehensive and vital influence on constructed wetlands (CWs). However, research on this subject is relatively limited. Hydraulic parameters can be categorized into design and operational parameters based on their properties. The design parameters are represented by the hydraulic gradient, substrate porosity, and aspect ratio, while operational parameters are represented by the hydraulic retention time, hydraulic loading rate, and water depth. These parameters directly or indirectly affect the operational lifespan and pollutant removal performance of CWs. Currently, the primary measures for optimizing the hydraulic conditions of CWs involve hydraulic structure and numerical simulation optimization methods. In this review, we aimed to elucidate the impact of hydraulic conditions on CW performance and summarize current optimization strategies. By highlighting the significance of hydraulic parameters in enhancing pollutant removal and extending operational lifespan, this review provides valuable insights for improving CW design and management. The findings will be useful for researchers and practitioners seeking to optimize CW systems and advance the application of nature-based solutions for wastewater treatment.
Collapse
Affiliation(s)
- Fangxing Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xinwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Zhenghe Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Chengye Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Weiyan Pan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Le Lu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Wancheng Luo
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
2
|
Zhou Y, Xu D, Xiao E, Xu D, Xu P, Zhang X, Zhou Q, He F, Wu Z. Relationship between electrogenic performance and physiological change of four wetland plants in constructed wetland-microbial fuel cells during non-growing seasons. J Environ Sci (China) 2018; 70:54-62. [PMID: 30037411 DOI: 10.1016/j.jes.2017.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 06/08/2023]
Abstract
To find suitable wetland plants for constructed wetland-microbial fuel cells (CW-MFCs), four commonly used wetland plants, including Canna indica, Cyperus alternifolius L., Acorus calamus, and Arundo donax, were investigated for their electrogenic performance and physiological changes during non-growing seasons. The maximum power output of 12.82mW/m2 was achieved in the A. donax CW-MFC only when root exudates were being released. The results also showed that use of an additional carbon source could remarkably improve the performance of electricity generation in the C. indica and A. donax CW-MFCs at relatively low temperatures (2-15°C). However, A. calamus withered before the end of the experiment, whereas the other three plants survived the winter safely, although their relative growth rate values and the maximum quantum yield of PSII (Fv/Fm) significantly declined, and free proline and malondialdehyde significantly accumulated in their leaves. On the basis of correlation analysis, temperature had a greater effect on plant physiology than voltage. The results offer a valuable reference for plant selection for CW-MFCs.
Collapse
Affiliation(s)
- Yin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Enrong Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Dan Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Peng Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Peat as Substrate for Small-Scale Constructed Wetlands Polishing Secondary Effluents from Municipal Wastewater Treatment Plant. WATER 2017. [DOI: 10.3390/w9120928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Giácoman-Vallejos G, Ponce-Caballero C, Champagne P. Pathogen removal from domestic and swine wastewater by experimental constructed wetlands. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:1263-1270. [PMID: 25909739 DOI: 10.2166/wst.2015.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study examined the performance of subsurface flow horizontal wetlands in total coliforms, faecal coliforms, enterococci and Salmonella removal from swine and domestic wastewaters. The effects of organic loading rate, contact time (CT) and the presence of aquatic macrophytes, Typha dominguensis and Typha latifolia, on treatment performance were evaluated. In general, chemical oxygen demand (COD) and total suspended solids (TSS) were reduced by 66 and 72% after 24 h and 75 and 84% after 48 h in domestic wastewaters, and 73 and 71% after 24 h and 72 and 78% after 48 h in swine wastewater. Total coliform and faecal coliform reductions of 70-83% and 65-78% were observed in the vegetated systems after 24 h of CT, while after 48 h, total coliform and faecal coliform reductions of 80-82% and 86-91% were noted.
Collapse
Affiliation(s)
- G Giácoman-Vallejos
- Faculty of Engineering, UADY, Av. Industrias No Contaminantes por Anillo Periférico Norte, Mérida Yucatán C.P. 97310, México
| | - C Ponce-Caballero
- Faculty of Engineering, UADY, Av. Industrias No Contaminantes por Anillo Periférico Norte, Mérida Yucatán C.P. 97310, México
| | - P Champagne
- Department of Civil Engineering & Department of Chemical Engineering, Queen's University, 58 University Avenue, Kingston, Ontario K7M 9H7, Canada E-mail:
| |
Collapse
|
5
|
Speer S, Champagne P, Anderson B. Using fundamental hydrogeological equations to monitor the effects of clogging and media consolidation on the hydraulic regime of a vertical subsurface flow treatment system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 118:11-20. [PMID: 23376342 DOI: 10.1016/j.jenvman.2012.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 11/08/2012] [Accepted: 12/28/2012] [Indexed: 06/01/2023]
Abstract
The design of passive biological filters has evolved and current design practices are predominantly based on flow (either horizontal or vertical) through porous media. To date, no method has been developed to accurately estimate the effective life expectancy of these types of treatment systems, nor have non-intrusive methods to determine the extent of substratum clogging been perfected. This research presents the results of tracer studies on various stages of two hybrid-passive landfill leachate treatment systems: an aerated pretreatment system followed by two different types of vertical-flow through porous media treatment systems. The tracer studies were used to assess changes in the active volumes of the different stages of the leachate treatment systems over a 9-month period. An analytical method, employing the governing equations for flow through porous media, was used to quantify the changes in saturated hydraulic conductivity in the treatment system cells. The results from the analytical method were combined with the results from the tracer study to further the understanding of the flow and mixing within the treatment system cells.
Collapse
Affiliation(s)
- Sean Speer
- Department of Civil Engineering, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | |
Collapse
|