1
|
Zhang G, Li W, Li D, Wang S, Lv L. Start-up of glycerol-driven denitrifying phosphorus removal from wastewater: The effects of the microaerobic environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121870. [PMID: 39032251 DOI: 10.1016/j.jenvman.2024.121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Glycerol, an abundant by-product of biodiesel production, represented a promising carbon source for enhancing nutrient removal from low C/N ratio wastewater. This study discovered a novel approach to initiate glycerol-driven denitrifying phosphorus removal (DPR) in situ by creating a short-term microaerobic environment within the aerobic zone. This approach facilitated the in-situ conversion of glycerol, which was subsequently utilized by denitrifying phosphate accumulating organisms (DPAOs) for DPR. The feasibility and stability of glycerol-driven DPR were validated in a continuous-flow pilot-scale reactor. Anaerobic phosphorus release increased from 1.0 mg/L/h to 2.5 mg/L/h, with fermentation bacteria and related functional genes showing significant increases. The stable stage exhibited 92.8% phosphorus removal efficiency and 55.5% DPR percentage. The microaerobic environment enhanced fermentation bacteria enrichment, crucial for glycerol-driven DPR stability. The collaborative interaction between fermentation bacteria and phosphate accumulating organisms (PAOs) played a key role in sustaining glycerol-driven DPR stability. These findings provide a robust theoretical foundation for applying glycerol-driven DPR in established wastewater treatment plants.
Collapse
Affiliation(s)
- Guanglin Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Donghui Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuncai Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Longyi Lv
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
2
|
Elahinik A, Haarsma M, Abbas B, Pabst M, Xevgenos D, van Loosdrecht MCM, Pronk M. Glycerol conversion by aerobic granular sludge. WATER RESEARCH 2022; 227:119340. [PMID: 36395566 DOI: 10.1016/j.watres.2022.119340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Glycerol is abundantly present in wastewater from industries such as biodiesel production facilities. Glycerol is also a potential carbon source for microbes that are involved in wastewater nutrient removal processes. The conversion of glycerol in biological phosphorus removal of aerobic granular sludge processes has not been explored to date. The current study describes glycerol utilization by aerobic granular sludge and enhanced biological phosphorus removal (EBPR). Robust granules with good phosphorus removal capabilities were formed in an aerobic granular sludge sequencing batch reactor fed with glycerol. The interaction between the fermentative conversion of glycerol and product uptake by polyphosphate accumulating organisms (PAO) was studied using stoichiometric and microbial community analysis. Metagenomic, metaproteomic and microscopic analysis identified a community dominated by Actinobacteria (Tessaracoccus and Micropruina) and a typical PAO known as Ca. Accumulibacter. Glycerol uptake facilitator (glpF) and glycerol kinase (glpK), two proteins involved in the transport of glycerol into the cellular metabolism, were only observed in the genome of the Actinobacteria. The anaerobic conversion appeared to be a combination of a substrate fermentation and product uptake-type reaction. Initially, glycerol fermentation led mainly to the production of 1,3-propanediol (1,3-PDO) which was not taken up under anaerobic conditions. Despite the aerobic conversion of 1,3-PDO stable granulation was observed. Over time, 1,3-PDO production decreased and complete anaerobic COD uptake was observed. The results demonstrate that glycerol-containing wastewater can effectively be treated by the aerobic granular sludge process and that fermentative and polyphosphate accumulating organisms can form a food chain in glycerol-based EBPR processes.
Collapse
Affiliation(s)
- Ali Elahinik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands.
| | - Maureen Haarsma
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Dimitrios Xevgenos
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands; Royal HaskoningDHV, Laan 1914 no 35, 3800AL, Amersfoort, The Netherlands
| |
Collapse
|
3
|
Recovery of Phosphorus in Wastewater in the Form of Polyphosphates: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
As non-renewable resource, the recovery and utilization of phosphorus from wastewater is an enduring topic. Stimulated by the advances in research on polyphosphates (polyP) as well as the development of Enhanced Biological Phosphorus Removal (EBPR) technology to achieve the efficient accumulation of polyP via polyphosphate accumulating organisms (PAOs), a novel phosphorus removal strategy is considered with promising potential for application in real wastewater treatment processes. This review mainly focuses on the mechanism of phosphorus aggregation in the form of polyP during the phosphate removal process. Further discussion about the reuse of polyP with different chain lengths is provided herein so as to suggest possible application pathways for this biosynthetic product.
Collapse
|
4
|
Yang G, Wang D, Yang Q, Zhao J, Liu Y, Wang Q, Zeng G, Li X, Li H. Effect of acetate to glycerol ratio on enhanced biological phosphorus removal. CHEMOSPHERE 2018; 196:78-86. [PMID: 29291517 DOI: 10.1016/j.chemosphere.2017.12.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 12/26/2017] [Indexed: 05/22/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is a sustainable and promising technology for phosphorus removal from wastewater. The efficiency of this technology, however, is often discounted due to the insufficient carbon sources in influent. In this work, the effect of acetate to glycerol ratio on the EBPR performance was evaluated. The experimental results showed when the ratio of acetate to glycerol decreased from 100/0% to 50/50%, the EBPR efficiency increased from 90.2% to 96.2%. Further decrease of acetate to glycerol ratio to 0/100% decreased the efficiency of EBPR to 30.5%. Fluorescence in situ hybridization analysis demonstrated appropriate increase of glycerol benefited to increase the relative abundance of phosphate accumulating organisms. Further investigation revealed the proper addition of glycerol increased the amount of polyhydroxyalkanoates synthesis, and then produced sufficient energy for oxic luxury phosphorus in the subsequent oxic phase.
Collapse
Affiliation(s)
- Guojing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Griffith School of Engineering, Griffith University, Nathan, QLD 4111, Australia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
5
|
Enhanced biological phosphorus removal with different carbon sources. Appl Microbiol Biotechnol 2016; 100:4735-45. [DOI: 10.1007/s00253-016-7518-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
|
6
|
Zhao J, Wang D, Li X, Zeng G, Yang Q. Improved biological phosphorus removal induced by an oxic/extended-idle process using glycerol and acetate at equal fractions. RSC Adv 2016. [DOI: 10.1039/c6ra18799d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Variations of effluent SOP concentration and SOP removal efficiency in O/EI reactor during long-term operation.
Collapse
Affiliation(s)
- Jianwei Zhao
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Dongbo Wang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Xiaoming Li
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Guangming Zeng
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Qi Yang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control
| |
Collapse
|
7
|
Tayà C, Guerrero J, Vanneste G, Guisasola A, Baeza JA. Methanol-driven enhanced biological phosphorus removal with a syntrophic consortium. Biotechnol Bioeng 2012; 110:391-400. [DOI: 10.1002/bit.24625] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/16/2012] [Accepted: 07/26/2012] [Indexed: 11/06/2022]
|
8
|
Guerrero J, Tayà C, Guisasola A, Baeza JA. Glycerol as a sole carbon source for enhanced biological phosphorus removal. WATER RESEARCH 2012; 46:2983-2991. [PMID: 22459328 DOI: 10.1016/j.watres.2012.02.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/24/2012] [Accepted: 02/26/2012] [Indexed: 05/31/2023]
Abstract
Wastewaters with low organic matter content are one of the major causes of EBPR failures in full-scale WWTP. This carbon source deficit can be solved by external carbon addition and glycerol is a perfect candidate since it is nowadays obtained in excess from biodiesel production. This work shows for the first time that glycerol-driven EBPR with a single-sludge SBR configuration is feasible (i.e. anaerobic glycerol degradation linked to P release and aerobic P uptake). Two different strategies were studied: direct replacement of the usual carbon source for glycerol and a two-step consortium development with glycerol anaerobic degraders and PAO. The first strategy provided the best results. The implementation of glycerol as external carbon source in full-scale WWTP would require a suitable anaerobic hydraulic retention time. An example using dairy wastewater with a low COD/P ratio confirms the feasibility of using glycerol as an external carbon source to increase P removal activity. The approach used in this work opens a new range of possibilities and, similarly, other fermentable substrates can be used as electron donors for EBPR.
Collapse
Affiliation(s)
- Javier Guerrero
- Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|