1
|
Cheng YF, Zhang ZZ, Ma WJ, Li GF, Huang BC, Fan NS, Jin RC. Response of the mainstream anammox process to the biodegradable carbon sources in the granule-based systems: The difference in self-stratification of the microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158191. [PMID: 35995153 DOI: 10.1016/j.scitotenv.2022.158191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The inevitable introduction of biodegradable carbon sources (such as monosaccharides and volatile fatty acids) originating from pretreatment units might affect the performance of the mainstream anaerobic ammonium oxidation (anammox) process. Two model carbon sources (glucose and acetate) were selected to investigate their effects on granule-based anammox systems under mainstream conditions (70 mg total nitrogen (TN) L-1, 15 °C). At a nitrogen loading rate of 2.87 ± 0.80 kg N m-3 d-1, a satisfactory effluent quality (TN < 10 mg L-1) was achieved in the presence of glucose or acetate at a chemical oxygen demand (COD/N) ratio of 0.5. The contribution of anammox to nitrogen removal decreased with increasing COD/N ratio to 1.0 because the expression of anammox functional genes was inhibited, whereas the expression of denitrifying functional genes was promoted. However, the nitrogen removal efficiency of the two considered reactors was maintained above 80 %. Self-stratification of the microbial community along the reactor height facilitated a functional balance through the retention of anammox bacteria in granules but resulted in washout of denitrifying bacteria in flocs under a high-flow pattern. These findings highlighted the advantages of granule-based systems in the mainstream anammox process due to their inherent biomass self-segregation property and the need for the development of targeted biomass retention strategies.
Collapse
Affiliation(s)
- Ya-Fei Cheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zheng-Zhe Zhang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wen-Jie Ma
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Gui-Feng Li
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
2
|
Li D, Chen H, Gao X, Zhang J. Establishment and optimization of partial nitrification/anammox/partial nitrification/anammox (PN/A/PN/A) process based on multi-stage ammonia oxidation: Using response surface method as a tool. BIORESOURCE TECHNOLOGY 2022; 361:127722. [PMID: 35917857 DOI: 10.1016/j.biortech.2022.127722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The presence of nitrite-oxidizing bacteria (NOB) when treating low-strength ammonia wastewater was a challenge in the application of the PN/A process. The partial nitrification/ANAMMOX/partial nitrification/ANAMMOX (PN/A/PN/A) process based on multiple oxidations of ammonia was proposed to solve this problem. The influence of independent variables such as nitrite concentration was analyzed based on the response surface method (RSM). The model showed that nitrite concentration has an adverse impact on ammonia removal efficiency and nitrite accumulation rate. The model provided optimal parameters for the PN/A/PN/A process: the dissolved oxygen concentration was 0.60 mg/L, and the cycle duration was 90 min. Advanced nitrogen removal was achieved by maintaining the nitrite concentration below 10.0 mg/L. The nitrogen removal efficiency was 81.44 ± 4.15 %, and the nitrogen removal rate was 0.18 ± 0.02 kg N/(m3⋅d). Potential functions of microorganisms were analyzed by functional annotation of prokaryotic taxa (FAPROTAX) and the correlation network analysis was performed.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Hao Chen
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Xin Gao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Wagner BM, Daigger GT, Love NG. Design methodologies to determine optimal staging of membrane-aerated biofilm reactors for mainstream treatment with anammox. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1887-1903. [PMID: 36315083 PMCID: wst_2022_315 DOI: 10.2166/wst.2022.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Partial nitritation anammox (PNA) membrane-aerated biofilm reactors (MABRs) can be used in mainstream nitrogen removal to help facilities reduce their energy consumption. Previous PNA MABR research has not investigated the impacts of staging, i.e. arraying MABRs in series, on their nitrogen removal performance, operation, and ability to suppress nitrite oxidizing bacteria. In this paper, a mathematical model simulated PNA MABR performance at different influent total ammonia concentrations and loadings. A design methodology for staging PNA MABRs was created and found that the amount of membrane surface area is dependent upon the total ammonia-nitrogen concentration and loading, and the air loading to the membrane must be proportional to the total ammonia-nitrogen loading to maximize the total inorganic nitrogen (TIN) removal rate. This led to approximately equal-sized stages that each had a TIN removal percentage of 71% of the influent total ammonia nitrogen. Staging a treatment train resulted in 9.8% larger total ammonia and 9.3% larger total nitrogen removal rates when compared with an un-staged reactor. The un-staged reactor also was not able to produce an effluent total ammonia concentration below 5 mg N/L which would be necessary for many facilities' permits.
Collapse
Affiliation(s)
- Brett M Wagner
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, Ann Arbor, MI 48109, USA E-mail:
| | - Glen T Daigger
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, Ann Arbor, MI 48109, USA E-mail:
| | - Nancy G Love
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, Ann Arbor, MI 48109, USA E-mail:
| |
Collapse
|
4
|
Rufí-Salís M, Petit-Boix A, Leipold S, Villalba G, Rieradevall J, Moliné E, Gabarrell X, Carrera J, Suárez-Ojeda ME. Increasing resource circularity in wastewater treatment: Environmental implications of technological upgrades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156422. [PMID: 35662600 DOI: 10.1016/j.scitotenv.2022.156422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
A paradigm shift is needed in wastewater treatment plants (WWTPs) to progress from traditional pollutant removal to resource recovery. However, whether this transformation produces overall environmental benefits will depend on the efficient and sustainable use of resources by emerging technologies. Given that many of these technologies are still being tested at the pilot scale, there is a lack of environmental assessments quantifying their impacts and benefits. In particular, an integrated approach to energy and nutrient recovery can elucidate the potential configurations for WWTPs. In this study, we conduct a life cycle assessment (LCA) of emergent wastewater treatment technologies aimed at increasing resource circularity in WWTPs. We focus on increasing energy self-sufficiency through biogas upgrades and a more radical circular approach aimed at nutrient recovery. Based on a case-study WWTP, we compare its current configuration with (1) implementing autotrophic nitrogen removal in the mainstream and deriving most of the organic matter for biogas production, which increases the quality and quantity of biogas available for energy production; (2) implementing struvite recovery through enhanced biological phosphorus removal (EBPR) as a radical approach to phosphorus management, offering an alternative to mineral fertilizer; and (3) a combination of both approaches. The results show that incremental changes in biogas production are insufficient for compensating for the environmental investment in infrastructure, although autotrophic nitrogen removal is beneficial for increasing the quality of the effluent. Combined phosphorus and energy recovery reduce the environmental impacts from the avoided use of fertilizers and phosphorus and the nitrogen release into water bodies. An integrated approach to resource management in WWTPs is thus desirable and creates new opportunities toward the implementation of circular strategies with low environmental impact in cities.
Collapse
Affiliation(s)
- Martí Rufí-Salís
- Sostenipra, Institute of Environmental Science and Technology (ICTA), Unidad de excelencia "María de Maeztu" (MDM-2015-0552), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, c/de les Sitges s/n, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - Anna Petit-Boix
- Sostenipra, Institute of Environmental Science and Technology (ICTA), Unidad de excelencia "María de Maeztu" (MDM-2015-0552), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Sina Leipold
- Department of Environmental Politics, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Chair of Environmental Politics, University of Jena, Bachstr. 18k, 07743 Jena, Germany
| | - Gara Villalba
- Sostenipra, Institute of Environmental Science and Technology (ICTA), Unidad de excelencia "María de Maeztu" (MDM-2015-0552), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, c/de les Sitges s/n, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - Joan Rieradevall
- Sostenipra, Institute of Environmental Science and Technology (ICTA), Unidad de excelencia "María de Maeztu" (MDM-2015-0552), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, c/de les Sitges s/n, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - Eduard Moliné
- Depuración de Aguas del Mediterráneo (DAM), Guglielmo Marconi, 11 piso 2°, 10 despacho 19, Parque Tecnológico, 46980 Paterna, Valencia, Spain
| | - Xavier Gabarrell
- Sostenipra, Institute of Environmental Science and Technology (ICTA), Unidad de excelencia "María de Maeztu" (MDM-2015-0552), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, c/de les Sitges s/n, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - Julián Carrera
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, c/de les Sitges s/n, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, c/de les Sitges s/n, Edifici Q, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
Kirim G, McCullough K, Bressani-Ribeiro T, Domingo-Félez C, Duan H, Al-Omari A, De Clippeleir H, Jimenez J, Klaus S, Ladipo-Obasa M, Mehrani MJ, Regmi P, Torfs E, Volcke EIP, Vanrolleghem PA. Mainstream short-cut N removal modelling: current status and perspectives. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2539-2564. [PMID: 35576252 DOI: 10.2166/wst.2022.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work gives an overview of the state-of-the-art in modelling of short-cut processes for nitrogen removal in mainstream wastewater treatment and presents future perspectives for directing research efforts in line with the needs of practice. The modelling status for deammonification (i.e., anammox-based) and nitrite-shunt processes is presented with its challenges and limitations. The importance of mathematical models for considering N2O emissions in the design and operation of short-cut nitrogen removal processes is considered as well. Modelling goals and potential benefits are presented and the needs for new and more advanced approaches are identified. Overall, this contribution presents how existing and future mathematical models can accelerate successful full-scale mainstream short-cut nitrogen removal applications.
Collapse
Affiliation(s)
- Gamze Kirim
- modelEAU, Université Laval, 1065 avenue de la Médecine, Québec, QC G1 V 0A6, Canada E-mail: ; CentrEau, Quebec Water Research Centre, 1065 avenue de la Médecine, Québec, QC G1 V 0A6, Canada
| | - Kester McCullough
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; Hampton Roads Sanitation District, 1434 Air Rail Ave., Virginia Beach, VA 23455, USA
| | - Thiago Bressani-Ribeiro
- BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Carlos Domingo-Félez
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ahmed Al-Omari
- Brown and Caldwell, 1725 Duke St. Suite 250, Alexandria, VA 22314, USA
| | - Haydee De Clippeleir
- DC Water and Sewer Authority, 5000 Overlook Ave., SW., Washington, DC 20032, USA
| | - Jose Jimenez
- Brown and Caldwell, 1725 Duke St. Suite 250, Alexandria, VA 22314, USA
| | - Stephanie Klaus
- Hampton Roads Sanitation District, 1434 Air Rail Ave., Virginia Beach, VA 23455, USA
| | - Mojolaoluwa Ladipo-Obasa
- DC Water and Sewer Authority, 5000 Overlook Ave., SW., Washington, DC 20032, USA; Department of Civil & Environmental Engineering, The George Washington University, 800 22nd Street NW, Washington, DC 20037, USA
| | - Mohamad-Javad Mehrani
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Ul. Narutowicza 11/12, Gdansk 80-233, Poland; Department of Urban Water and Waste Management, University of Duisburg-Essen, Universit¨atsstraße 15, 45141, Essen, Germany
| | - Pusker Regmi
- Brown and Caldwell, 1725 Duke St. Suite 250, Alexandria, VA 22314, USA
| | - Elena Torfs
- Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Gent 9000, Belgium; BIOMATH, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Eveline I P Volcke
- BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Gent 9000, Belgium; Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Gent 9000, Belgium
| | - Peter A Vanrolleghem
- modelEAU, Université Laval, 1065 avenue de la Médecine, Québec, QC G1 V 0A6, Canada E-mail: ; CentrEau, Quebec Water Research Centre, 1065 avenue de la Médecine, Québec, QC G1 V 0A6, Canada
| |
Collapse
|
6
|
Pérez J, Laureni M, van Loosdrecht MCM, Persson F, Gustavsson DJI. The role of the external mass transfer resistance in nitrite oxidizing bacteria repression in biofilm-based partial nitritation/anammox reactors. WATER RESEARCH 2020; 186:116348. [PMID: 32911269 DOI: 10.1016/j.watres.2020.116348] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 05/26/2023]
Abstract
A model-based study was developed to analyse the behaviour of Moving Bed Biofilm Reactor (MBBR) and Integrated Fixed-Film Activated Sludge (IFAS) reactor configurations for the removal of nitrogen in the main water line of municipal wastewater treatment plants via partial nitritation/anammox (PN/AMX). The basic principles and underlying mechanisms linking operating conditions to process performance were investigated, with particular focus on nitrite oxidizing bacteria (NOB) repression and resulting volumetric conversion rates. The external mass transfer resistance is a major factor differentiating granular sludge PN/AMX processes from MBBR or IFAS systems. The external mass transfer resistance was found to promote the metabolic coupling between anammox (AMX) and ammonia oxidizing bacteria (AOB), crucial for NOB repression in the biofilm. Operation at low bulk DO prevents NOB proliferation in the flocs of IFAS systems as AMX activity limits nitrite availability (the so-called AMX nitrite sink). Importantly, the effectiveness of the AMX nitrite sink strongly depends on the AMX sensitivity to oxygen. Also, over a broad range of operational conditions, the seeding of AOB from the biofilm played a crucial role in maintaining their activity in the flocs. From a practical perspective, while low DO promotes NOB repression, lower nitrogen loads have to be applied to maintain the same effluent quality. Thus, a trade-off between NOB repression and volumetric conversion capacity needs to be defined. To this end, IFAS allow for higher volumetric rates, but the window of operating conditions with effective NOB repression is smaller than that for MBBR. Ultimately, this study identified the principles controlling NOB in MBBR and IFAS systems and the key differences with granular reactors, allowing for the interpretation of (seemingly contradictory) published experimental results.
Collapse
Affiliation(s)
- Julio Pérez
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands; Department of Chemical, Biological and Environmental Engineering, Engineering School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain.
| | - Michele Laureni
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands; Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - David J I Gustavsson
- VA SYD, P.O. Box 191, SE-20121 Malmö, Sweden; Sweden Water Research, Ideon Science Park, Scheelevägen 15, SE-22370 Lund, Sweden
| |
Collapse
|
7
|
Cheng YF, Zhang ZZ, Li GF, Zhang Q, Zheng XP, Cai S, Xue Y, Huang BC, Jin RC. Anammox Granules Acclimatized to Mainstream Conditions Can Achieve a Volumetric Nitrogen Removal Rate Comparable to Sidestream Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12959-12966. [PMID: 32970415 DOI: 10.1021/acs.est.0c01469] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The implementation of mainstream anammox has gained increasing attention. In this study, the feasibility of using sidestream anammox granules to start up mainstream reactors was investigated by comparing two switching strategies. A maximum nitrogen removal potential of 3.6 ± 0.2 kg N m-3 d-1 was obtained for the reactor after direct switching to mainstream conditions (70 mg TN L-1, 15 °C). Nevertheless, the reactor preacclimatized to 25 °C (Ma) exhibited a higher nitrogen removal potential of 7.0 ± 0.3 kg N m-3 d-1 at 15 °C, which is the highest volumetric nitrogen removal rate of mainstream anammox reactors to date. Candidatus Kuenenia stuttgartiensis was identified as the dominant anammox bacterium, and its relative abundance in two reactors remained stable throughout the whole operation (200 days). Moreover, with the aid of acclimatization, the activation energy was reduced and the specific growth rate became higher. These results indicated that the physiological evolution of the dominant anammox bacterium instead of interspecies selection was the main reason for the high potential during the switch to mainstream conditions. Therefore, using sidestream anammox granules as seed sludge to start up mainstream reactors was demonstrated to be feasible, and a switching strategy of acclimatization at 25 °C was recommended.
Collapse
Affiliation(s)
- Ya-Fei Cheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zheng-Zhe Zhang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Gui-Feng Li
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qian Zhang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia-Ping Zheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuang Cai
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan Xue
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
8
|
Deng S, Peng Y, Zhang L, Wu L. Advanced nitrogen removal from municipal wastewater via two-stage partial nitrification-simultaneous anammox and denitrification (PN-SAD) process. BIORESOURCE TECHNOLOGY 2020; 304:122955. [PMID: 32062497 DOI: 10.1016/j.biortech.2020.122955] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 05/12/2023]
Abstract
A modified two-stage anammox process was constructed and achieved advanced nitrogen removal from municipal wastewater. The first stage was Partial Nitrification (PN), in which nitrite accumulation rate was over 95% by controlling dissolved oxygen concentration (<1 mg/L) and aeration time (90-120 min). The second stage was simultaneous anammox and denitrification (SAD), in which the reactor was fed with the effluent of the first stage and a part of raw wastewater. The effluent total inorganic nitrogen (NH4+-N, NO2--N and NO3--N) was only 1.6 ± 0.8 mg N/L and the nitrogen removal efficiency reached 97.1%. The proportion of anammox in nitrogen removal was up to 73-82% and Candidatus Brocadia was the main anammox genus accounted for 8.0-2.2%. And partial denitrification occurred with the appearance of Thauera (0-1.0%). The PN-SAD process is an energy-saving treatment for municipal wastewater with a total hydraulic retention time of 6 h.
Collapse
Affiliation(s)
- Shiyun Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
9
|
Gustavsson DJI, Suarez C, Wilén BM, Hermansson M, Persson F. Long-term stability of partial nitritation-anammox for treatment of municipal wastewater in a moving bed biofilm reactor pilot system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136342. [PMID: 31982771 DOI: 10.1016/j.scitotenv.2019.136342] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 05/21/2023]
Abstract
Nitrogen removal from the mainstream of municipal wastewater with partial nitritation-anammox (PNA) would be highly beneficial with regard to the uses of energy and organic carbon. However, the challenges of process instability, low nitrogen removal rates (NRR) and unwanted aerobic nitrite oxidation need to be solved to reach large-scale implementation. Here, we have operated pilot-scale moving bed biofilm reactors (MBBRs) for mainstream treatment, together with sidestream treatment of sludge liquor from anaerobic digestors, for over 900 days to investigate process stability, reactor performance and microbial community structure at realistic conditions. The MBBR biofilm contained stable and high relative abundances of anammox bacteria (10-32%) consisting of two major Brocadia sp. populations, and several populations of aerobic ammonia-oxidising bacteria (AOB) within Nitrosomonas sp. (0.2-3.1%), as assessed by 16S rDNA amplicon sequencing. In addition, nitrite-oxidising bacteria (NOB) consisting of Nitrospira sp. (0.4-0.8%) and Nitrotoga sp. (up to 0.4%) were present. Nitrogen was removed at a peak rate of 0.66 g N m-2 d-1 (0.13 kg N m-3 d-1) with a nitrate production over ammonium consumption of 15% by the NOB, at operation with continuous aeration at 15 °C. However, during most periods with continuous aeration, the NRR was lower (≈ 0.45 g N m-2 d-1), with larger relative nitrate production (≈40%), presumably due to problems to maintain stable residual ammonium concentrations during wet-weather mainstream flows. Changing reactor operation to intermittent aeration decreased the NRR but did not help in suppressing the NOB. The study shows that with MBBRs, stable mainstream PNA can be attained at realistic NRR, but with need for post-treatment of nitrate, since effective NOB suppression was hard to achieve.
Collapse
Affiliation(s)
- David J I Gustavsson
- VA SYD, P.O. Box 191, SE-20121 Malmö, Sweden; Sweden Water Research, c/o Ideon Science Park, Scheelevägen 15, SE-22370 Lund, Sweden
| | - Carolina Suarez
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden; Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| |
Collapse
|
10
|
Pedrouso A, Trela J, Val Del Rio A, Mosquera-Corral A, Plaza E. Performance of partial nitritation-anammox processes at mainstream conditions in an IFAS system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109538. [PMID: 31703243 DOI: 10.1016/j.jenvman.2019.109538] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The partial nitritation-anammox processes implementation in the main line of wastewater treatment plants would lead them closer to the energy autarky. With this purpose, an integrated fixed film activated sludge (IFAS) reactor was operated at pilot scale. Efficient nitrogen removal (72 ± 11%) was achieved for anaerobically pre-treated municipal wastewater at low temperature (21 - 15 °C), with a nitrogen removal rate of 37 ± 3 g N/(m3·d) at 15 °C. The ammonium oxidizing bacteria were more abundant in the activated sludge, while anammox bacteria were primarily located in biofilm attached onto the carriers surface. Nitrite oxidizing bacteria (NOB) activity was similar between both fractions and its specific activity decreased more than that of other populations when the operating temperature was reduced. Furthermore, the IFAS operational strategy (aerobic/anoxic periods) allowed an efficient NOB activity suppression inside the reactor, which accounted only for the 10 - 20% of the maximum potential activity.
Collapse
Affiliation(s)
- Alba Pedrouso
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa de Lope Gómez de Marzoa s/n, E-15782, Santiago de Compostela, Galicia, Spain.
| | - Jozef Trela
- Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology (KTH), Teknikringen 10B, SE-10044, Stockholm, Sweden.
| | - Angeles Val Del Rio
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa de Lope Gómez de Marzoa s/n, E-15782, Santiago de Compostela, Galicia, Spain.
| | - Anuska Mosquera-Corral
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa de Lope Gómez de Marzoa s/n, E-15782, Santiago de Compostela, Galicia, Spain.
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology (KTH), Teknikringen 10B, SE-10044, Stockholm, Sweden.
| |
Collapse
|
11
|
Hoekstra M, Geilvoet SP, Hendrickx TLG, van Erp Taalman Kip CS, Kleerebezem R, van Loosdrecht MCM. Towards mainstream anammox: lessons learned from pilot-scale research at WWTP Dokhaven. ENVIRONMENTAL TECHNOLOGY 2019; 40:1721-1733. [PMID: 29697015 DOI: 10.1080/09593330.2018.1470204] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/16/2018] [Indexed: 05/21/2023]
Abstract
The aim of this research was to study the biological feasibility of the Partial Nitritation/Anammox (PN/A) technology to remove nitrogen from municipal mainstream wastewaters. During stable process operations at summer temperatures (23.2 ± 1.3°C), the total nitrogen removal rate was 0.223 ± 0.029 kg N (m3 d)-1 while at winter temperatures (13.4 ± 1.1°C) the total nitrogen removal rate was 0.097 ± 0.016 kg N (m3 d)-1. Nitrite-oxidizing bacteria (NOB) suppression was successfully achieved at the complete temperature range of municipal mainstream wastewater. Despite the presence of NOB as observed in activity tests, their activity could be successfully suppressed due to a relative low dissolved oxygen concentration. An overcapacity of ammonia-oxidizing bacteria and anammox activity was always present. Long-term stability is a focus point for future research, especially in relation to the stability of the biological oxygen demand removing step, preceding the PN/A reactor.
Collapse
Affiliation(s)
- Maaike Hoekstra
- a Department of Biotechnology, Faculty of Applied Sciences , Delft University of Technology , Delft , Netherlands
| | | | | | | | - Robbert Kleerebezem
- a Department of Biotechnology, Faculty of Applied Sciences , Delft University of Technology , Delft , Netherlands
| | - Mark C M van Loosdrecht
- a Department of Biotechnology, Faculty of Applied Sciences , Delft University of Technology , Delft , Netherlands
| |
Collapse
|
12
|
Soler-Jofra A, Wang R, Kleerebezem R, van Loosdrecht MCM, Pérez J. Stratification of nitrifier guilds in granular sludge in relation to nitritation. WATER RESEARCH 2019; 148:479-491. [PMID: 30408734 DOI: 10.1016/j.watres.2018.10.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
A lab-scale partial nitritation granular sludge air-lift reactor was operated in continuous mode treating low strength synthetic medium (influent ca. 50 mg-N-NH4+/L). Granules were initially stratified with AOB in the external shell and NOB in the inner core at 20 °C. Once temperature was decreased progressively from 20 °C to 15 °C, nitrate production was initially observed during several weeks. However, by maintaining relatively high ammonium concentrations in the liquid (ca. 28 mg-N-NH4+/L), effluent nitrate concentrations in the reactor decreased in time and process performance was recovered. Batch tests were performed in the reactor at different conditions. To understand the experimental results an existing one-dimensional biofilm model was used to simulate batch tests and theoretically assess the impact of stratification, dissolved oxygen (DO) and short-term effects of temperature on time course concentrations of ammonium, nitrite and nitrate. This theoretical assessment served to develop an experimental methodology for the evaluation of in-situ batch tests in the partial nitritation reactor. These batch tests proved to be a powerful tool to easily monitor the extent of stratification of nitrifier guilds in granular sludge and to determine the required bulk ammonium concentration to minimize nitrite oxidation. When nitrifier guilds were stratified in the granular sludge, a higher bulk ammonium concentration was required to efficiently repress NOB at lower temperature (ca. 19 versus 7 mg-N-NH4+/L at 15 and 20 °C, respectively).
Collapse
Affiliation(s)
- Aina Soler-Jofra
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Ru Wang
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands; Department of Environment Engineering, College of Environmental & Resource Science, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Robbert Kleerebezem
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Julio Pérez
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands; Department of Chemical, Biological and Environmental Engineering, Universitat Autonoma de Barcelona, 08193, Cerdanyola del Valles, Spain.
| |
Collapse
|
13
|
Zhang X, Zhao B, Meng J, Zhou A, Yue X, Niu Y, Cui Y. Efficiency, granulation, and bacterial populations related to pollutant removal in an upflow microaerobic sludge reactor treating wastewater with low COD/TN ratio. BIORESOURCE TECHNOLOGY 2018; 270:147-155. [PMID: 30216924 DOI: 10.1016/j.biortech.2018.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
In this study, a novel upflow microaerobic sludge reactor (UMSR) was constructed to conduct anaerobic digestion of municipal wastewater with low carbon and nitrogen ratio (C/N). Oxygen in the UMSR was supplied by falling water and external recirculation. Excellent nitrogen removal performance was obtained in the UMSR for treating wastewater with low C/N ratio at a temperature of 25 °C and a hydraulic retention time of 24 h. Ammonium and total nitrogen removal efficiencies averaged 92.35% and 90.41%, respectively, and sludge granulation occurred during acclimation. The inferred metabolism of nitrogen removal and ecological positions of functional microbe were integrated into a granule model by scanning electron microscopy. Additionally, the analysis of microbial community indicated that aerobic nitrifying bacteria and heterotrophic bacteria survived on the surface of sludge floc and granules while the anaerobic autotrophic, heterotrophic denitrifying, and anaerobic ammonia oxidation bacteria were present in the inner layer.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yukun Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
14
|
Two-stage partial nitritation-anammox process for high-rate mainstream deammonification. Appl Microbiol Biotechnol 2018; 102:8079-8091. [DOI: 10.1007/s00253-018-9207-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 11/26/2022]
|
15
|
Reino C, Suárez-Ojeda ME, Pérez J, Carrera J. Stable long-term operation of an upflow anammox sludge bed reactor at mainstream conditions. WATER RESEARCH 2018; 128:331-340. [PMID: 29117586 DOI: 10.1016/j.watres.2017.10.058] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
The efforts for implementing the anammox process at mainstream conditions with high nitrogen removal rates have gained much attention in the race for achieving an energy-positive urban wastewater treatment plant. Here, the successful and stable long-term operation of an Upflow Anammox Sludge Bed (UAnSB) reactor treating a low-strength synthetic influent amended with ammonium and nitrite for 420 days, and a nitrite-amended pre-treated real urban wastewater for 110 days at temperatures as low as 11 °C is presented. The short and long-term effects of temperature on anammox activity were assessed when the synthetic influent was treated, and the UAnSB reactor was demonstrated to be a robust reactor to confront low temperatures, typically found at mainstream conditions. In fact, a nitrogen loading rate as high as 1.8 ± 0.1 g N L-1 d-1 with 82 ± 4% of nitrogen removal was achieved at 11 °C treating the low-strength synthetic influent. Furthermore, the effect of treating a nitrite-amended pre-treated real urban wastewater at 11 °C at long-term in the UAnSB reactor was evaluated, and a stable operation was achieved with a high average nitrogen removal rate (1.2 ± 0.5 g N L-1 d-1). The relative abundance of anammox bacteria was maintained higher than 70% according to fluorescence in situ hybridization during the whole operation, being Candidatus Brocadia anammoxidans the predominant microbial species. The presence of heterotrophs in the sludge bed was surmised through heterotrophic batch tests, but anammox activity was demonstrated to be higher than heterotrophic activity, even when the synthetic influent was replaced by the nitrite-amended pre-treated real wastewater. The feasibility of operating an enriched anammox reactor at high nitrogen removal rate at long-term at mainstream conditions was demonstrated in this study.
Collapse
Affiliation(s)
- Clara Reino
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Ed. Q-Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Ed. Q-Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Julio Pérez
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Ed. Q-Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Julián Carrera
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Ed. Q-Campus UAB, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
16
|
Kouba V, Vejmelkova D, Proksova E, Wiesinger H, Concha M, Dolejs P, Hejnic J, Jenicek P, Bartacek J. High-Rate Partial Nitritation of Municipal Wastewater after Psychrophilic Anaerobic Pretreatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11029-11038. [PMID: 28845968 DOI: 10.1021/acs.est.7b02078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Partial nitritation/anammox can provide energy-efficient nitrogen removal from the main stream of municipal wastewater. The main bottleneck is the growth of nitrite oxidizing bacteria (NOB) at low temperatures (<15 °C). To produce effluent suitable for anammox, real municipal wastewater after anaerobic pretreatment was treated by enriched ammonium oxidizing bacteria (AOB) in suspended sludge SBR at 12 °C. NOB were continually washed out using aerobic duration control strategy (ADCS). Solids retention time was set to 9-16 days. Using this approach, average ammonia conversion higher than 57% at high oxidation rate of 0.4 ± 0.1 kg-N kg-VSS-1 d-1 was achieved for more than 100 days. Nitrite accumulation (N-NO2-/N-NOX) of 92% was maintained. Thus, consistently small amounts of present NOB were efficiently suppressed. Our mathematical model explained how ADCS enhanced the inhibition of NOB growth via NH3 and HNO2. This approach will produce effluent suitable for anammox even under winter conditions in mild climates.
Collapse
Affiliation(s)
- Vojtech Kouba
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Dana Vejmelkova
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Eva Proksova
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Helene Wiesinger
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Martin Concha
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Petr Dolejs
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Jakub Hejnic
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Pavel Jenicek
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Jan Bartacek
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| |
Collapse
|
17
|
Reino C, van Loosdrecht MCM, Carrera J, Pérez J. Effect of temperature on N 2O emissions from a highly enriched nitrifying granular sludge performing partial nitritation of a low-strength wastewater. CHEMOSPHERE 2017; 185:336-343. [PMID: 28704665 DOI: 10.1016/j.chemosphere.2017.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
In the race to achieve a sustainable urban wastewater treatment plant, not only the energy requirements have to be considered but also the environmental impact of the facility. Thus, nitrous oxide (N2O) emissions are a key-factor to pay attention to, since they can dominate the total greenhouse gases emissions from biological wastewater treatment. In this study, N2O production factors were calculated during the operation of a granular sludge airlift reactor performing partial nitritation treating a low-strength synthetic influent, and furthermore, the effect of temperature on N2O production was assessed. Average gas emission relative to conversion of ammonium was 1.5 ± 0.3% and 3.7 ± 0.5% while the effluent contained 0.5 ± 0.1% and 0.7 ± 0.1% (% N-oxidized) at 10 and 20 °C, respectively. Hence, temperature increase resulted in higher N2O production. The reasons why high temperature favoured N2O production remained unclear, but different theoretical hypotheses were suggested.
Collapse
Affiliation(s)
- Clara Reino
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Ed. Q-Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Julián Carrera
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Ed. Q-Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Julio Pérez
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Ed. Q-Campus UAB, 08193 Bellaterra, Barcelona, Spain; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
18
|
Poot V, Hoekstra M, Geleijnse MAA, van Loosdrecht MCM, Pérez J. Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge. WATER RESEARCH 2016; 106:518-530. [PMID: 27770728 DOI: 10.1016/j.watres.2016.10.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/17/2016] [Accepted: 10/10/2016] [Indexed: 05/21/2023]
Abstract
Partial nitritation was stably achieved in a bench-scale airlift reactor (1.5L) containing granular sludge. Continuous operation at 20 °C treating low-strength synthetic wastewater (50 mg N-NH4+/L and no COD) achieved nitrogen loading rates of 0.8 g N-NH4+/(L·d) during partial nitritation. The switch between nitrite-oxidizing bacteria (NOB) repression and NOB proliferation was observed when ammonium concentrations in the reactor were below 2-5 mg N-NH4+/L for DO concentrations lower than 4 mg O2/L at 20 °C. Nitrospira spp. were detected to be the dominant NOB population during the entire reactor operation, whereas Nitrobacter spp. were found to be increasing in numbers over time. Stratification of the granule structure, with ammonia-oxidizing bacteria (AOB) occupying the outer shell, was found to be highly important in the repression of NOB in the long term. The pH gradient in the granule, containing a pH difference of ca. 0.4 between the granule surface and the granule centre, creates a decreasing gradient of ammonia towards the centre of the granule. Higher residual ammonium concentration enhances the ammonium oxidation rate of those cells located further away from the granule surface, where the competition for oxygen between AOB and NOB is more important, and it contributes to the stratification of both populations in the biofilm.
Collapse
Affiliation(s)
- Vincent Poot
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maaike Hoekstra
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mitchell A A Geleijnse
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Julio Pérez
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
19
|
Reino C, Suárez-Ojeda ME, Pérez J, Carrera J. Kinetic and microbiological characterization of aerobic granules performing partial nitritation of a low-strength wastewater at 10 °C. WATER RESEARCH 2016; 101:147-156. [PMID: 27262119 DOI: 10.1016/j.watres.2016.05.059] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
A granular airlift reactor enriched in ammonia oxidizing bacteria (AOB) was operated at 10 °C performing stable partial nitritation in the long-term. The reactor treated a synthetic low-strength influent during 250 days with an average nitrogen loading rate of 0.63 ± 0.06 g N L(-1) d(-1). Nitrate production was barely detected, being the average concentration in the effluent of 0.6 ± 0.3 mg N-NO3 L(-1). Furthermore, a suitable effluent for a subsequent reactor performing the anammox process was achieved. A maximum specific growth rate as high as 0.63 ± 0.05 d(-1) was determined by performing kinetic experiments with the granular sludge in a chemostat and fitting the results to the Monod model. Pyrosequencing analysis showed a high enrichment in AOB (41 and 65% of the population were identified as Nitrosomonas genus on day 98 and 233, respectively) and an effective repression of nitrite oxidizing bacteria in the long-term. Pyrosequencing analysis also identified the coexistence of nitrifying bacteria and heterotrophic psychrotolerant microorganisms in the granular sludge. Some psychrotolerant microorganisms are producers of cryoprotective extracellular polymeric substances that could explain the better survival of the whole consortia at cold temperatures.
Collapse
Affiliation(s)
- Clara Reino
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Ed. Q-Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Ed. Q-Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Julio Pérez
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Ed. Q-Campus UAB, 08193, Bellaterra, Barcelona, Spain; Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft, 2628 BC, The Netherlands
| | - Julián Carrera
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Ed. Q-Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|