1
|
Ullah T, Gul K, Khan H, Ara B, Zia TUH. Efficient removal of selected fluoroquinolones from the aqueous environment using reduced magnetic graphene oxide/polyaniline composite. CHEMOSPHERE 2022; 293:133452. [PMID: 34995619 DOI: 10.1016/j.chemosphere.2021.133452] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/25/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
In the present study, reduced magnetic graphene oxide/polyaniline (RmGO/PANI) composite was synthesized via in-situ oxidative polymerization method. The synthesized RmGO/PANI was characterized by fourier transform infrared, scanning electron microscope, X-ray diffraction and energy dispersive X-rays techniques. The synthesized RmGO/PANI was explored as an adsorbent for the removal of moxifloxacin (MOX) and ofloxacin (OFL) from the aqueous samples. To inflate removal efficiency of RmGO/PANI, various adsorption effecting parameters such as effect of pH (2-12), RmGO/PANI dosage (2-14 mg), analyte concentration (150-525 μg mL-1 for MOX and 15-40 μg mL-1 for OFL), contact time (10-120 min) and temperature (293-343 K) were studied. Moreover, kinetic study exhibits that adsorption of MOX/OFL using RmGO/PANI follows pseudo second order kinetic model. The adsorption of MOX/OFL well-fitted to the Langmuir adsorption isotherm which demonstrates mono-layer adsorption of MOX/OFL on the surface of RmGO/PANI with maximum adsorption capacity of 47.7 mg g-1 and 27.33 mg g-1 for OFL and MOX, respectively. Thermodynamic study indicates that the adsorption process was spontaneous and exothermic in nature with the decrease of randomness of the system during the adsorption. On account of its practical applications, RmGO/PANI is considered an excellent adsorbent with 99% and 96% removal efficacy for MOX and OFL, respectively. The synthesized RmGO/PANI was reused for ten consecutive batches as well as applied to the real samples, maintain an excellent removal capacity. The reusable nature of RmGO/PANI declare this solid medium as an innovative adsorbent for real sample applications and wastewater treatment.
Collapse
Affiliation(s)
- Tasbeeh Ullah
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Kashif Gul
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Hamayun Khan
- Department of Chemistry, Islamia College University, Peshawar, 25120, Pakistan.
| | - Behisht Ara
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Tanveer Ul Haq Zia
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan.
| |
Collapse
|
2
|
Shen J, Zhang S, Zeng Z, Huang J, Shen Y, Guo Y. Synthesis of Magnetic Short-Channel Mesoporous Silica SBA-15 Modified with a Polypyrrole/Polyaniline Copolymer for the Removal of Mercury Ions from Aqueous Solution. ACS OMEGA 2021; 6:25791-25806. [PMID: 34632235 PMCID: PMC8495851 DOI: 10.1021/acsomega.1c04249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 05/31/2023]
Abstract
A novel magnetic short-channel mesoporous silica SBA-15 composite adsorbent was prepared by the copolymerization of pyrrole and aniline. The prepared novel nanoadsorbent polypyrrole-polyaniline/CoFe2O4-SBA-15 (PPy-PANI/M-SBA-15) has a significant adsorption effect on heavy metal mercury ions. The batch adsorption experiment was carried out to study the effects of various parameters including solution pH, initial concentration (C 0), adsorbent dose (dosage), temperature (T), and contact time on the adsorption effect. The analysis results of the response surface method (RSM) and central composite design (CCD) show that the importance for adsorption factors is pH > C 0 > T > dosage, and the maximum capacity of PPy-PANI/M-SBA-15 is 346.2 mg/g under the optimal conditions of pH = 6.7, T = 310 K, C 0 = 29.5 mg/L, and a dosage of 0.044 g/L. The pseudo-second-order kinetic model and the Langmuir isotherm model simulate the adsorption behavior of mercury ions. In addition, thermodynamic parameters indicate self-heating and reversible adsorption processes. A covalent bond is formed between the nitrogen-containing functional group and the mercury ions. Excellent magnetic properties and high reproducibility indicate that PPy-PANI/M-SBA-15 has excellent recyclability and environmentally friendly properties and can become a potential heavy metal ion adsorbent in practical applications.
Collapse
Affiliation(s)
- Jingtao Shen
- School
of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shuyuan Zhang
- School
of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zheng Zeng
- School
of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jialun Huang
- School
of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yi Shen
- School
of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yongfu Guo
- School
of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu
Collaborative Innovation Center of Technology and Material of Water
Treatment, Suzhou University of Science
and Technology, Suzhou 215009, China
| |
Collapse
|
3
|
Meng Y, Xiao L, Muslim A, Hojiahmat M. Improving the adsorption of poly(o-phenylenediamine) to heavy metal ions in aqueous solution through its composite with carbon dots. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02739-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Polyaniline/Nanomaterial Composites for the Removal of Heavy Metals by Adsorption: A Review. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5090233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heavy metals represent one of the most important kinds of pollutants, causing serious threats to the ecological balance. Thus, their removal from aqueous solution is a major environmental concern worldwide. The process of adsorption—being very simple, economical, and effective—is widely applied for the decontamination of wastewaters from heavy metals. In this process, the adsorbent is the key factor affecting the performance; for this reason, significant efforts have been made to develop highly efficient and selective adsorbents with outstanding properties. This paper presents a detailed overview of the research on different methods of synthesis of nanocomposite materials based on the polymer polyaniline combined with nanomaterials, along with the influence of the synthesis method on their size, morphology, and properties. In addition, the study evaluates the adsorption efficiency of various developed nanocomposites for the adsorption of heavy metals from aqueous solution. From an economical and environmental point of view, the regeneration studies of the nanocomposites are also reported.
Collapse
|
5
|
Gong Z, Chan HT, Chen Q, Chen H. Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources. NANOMATERIALS 2021; 11:nano11071792. [PMID: 34361182 PMCID: PMC8308365 DOI: 10.3390/nano11071792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/07/2022]
Abstract
Toxic heavy metal contamination in food and water from environmental pollution is a significant public health issue. Heavy metals do not biodegrade easily yet can be enriched hundreds of times by biological magnification, where toxic substances move up the food chain and eventually enter the human body. Nanotechnology as an emerging field has provided significant improvement in heavy metal analysis and removal from complex matrices. Various techniques have been adapted based on nanomaterials for heavy metal analysis, such as electrochemical, colorimetric, fluorescent, and biosensing technology. Multiple categories of nanomaterials have been utilized for heavy metal removal, such as metal oxide nanoparticles, magnetic nanoparticles, graphene and derivatives, and carbon nanotubes. Nanotechnology-based heavy metal analysis and removal from food and water resources has the advantages of wide linear range, low detection and quantification limits, high sensitivity, and good selectivity. There is a need for easy and safe field application of nanomaterial-based approaches.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hiu Ting Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
- Correspondence: (Q.C.); (H.C.); Tel.: +852-6649-4275 (Q.C.); +852-3411-2060 (H.C.)
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
- Correspondence: (Q.C.); (H.C.); Tel.: +852-6649-4275 (Q.C.); +852-3411-2060 (H.C.)
| |
Collapse
|
6
|
Graphene oxide/Fe3O4/polyaniline nanocomposite as an efficient adsorbent for the extraction and preconcentration of ultra-trace levels of cadmium in rice and tea samples. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04256-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Dutta S, Manna K, Srivastava SK, Gupta AK, Yadav MK. Hollow Polyaniline Microsphere/Fe 3O 4 Nanocomposite as an Effective Adsorbent for Removal of Arsenic from Water. Sci Rep 2020; 10:4982. [PMID: 32188897 PMCID: PMC7080834 DOI: 10.1038/s41598-020-61763-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/20/2019] [Indexed: 11/10/2022] Open
Abstract
Polyaniline hollow microsphere (PNHM)/Fe3O4 magnetic nanocomposites have been synthesized by a novel strategy and characterized. Subsequently, PNHM/Fe3O4-40 (Fe3O4 content: 40 wt.%) was used as an adsorbent for the removal of arsenic (As) from the contaminated water. Our investigations showed 98–99% removal of As(III) and As(V) in the presence of PNHM/Fe3O4-40 following pseudo-second-order kinetics (R2 > 0.97) and equilibrium isotherm data fitting well with Freundlich isotherm (R2 > 0.98). The maximum adsorption capacity of As(III) and As(V) correspond to 28.27 and 83.08 mg g−1, respectively. A probable adsorption mechanism based on X-ray photoelectron spectroscopy analysis was also proposed involving monodentate-mononuclear/bidentate-binuclear As-Fe complex formation via legend exchange. In contrast to NO3− and SO42− ions, the presence of PO43− and CO32− co-ions in contaminated water showed decrease in the adsorption capacity of As(III) due to the competitive adsorption. The regeneration and reusability studies of spent PNHM/Fe3O4-40 adsorbent showed ~83% of As(III) removal in the third adsorption cycle. PNHM/Fe3O4-40 was also found to be very effective in the removal of arsenic (<10 μg L−1) from naturally arsenic-contaminated groundwater sample.
Collapse
Affiliation(s)
- Soumi Dutta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kunal Manna
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Suneel Kumar Srivastava
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India. .,School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Manoj Kumar Yadav
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
8
|
Maia LFO, Santos MS, Andrade TG, Hott RDC, Faria MCDS, Oliveira LCA, Pereira MC, Rodrigues JL. Removal of mercury(II) from contaminated water by gold-functionalised Fe 3O 4 magnetic nanoparticles. ENVIRONMENTAL TECHNOLOGY 2020; 41:959-970. [PMID: 30136902 DOI: 10.1080/09593330.2018.1515989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Fe3O4 nanoparticles were prepared by co-precipitation of Fe2+ and Fe3+ and then modified with Au to produce an effective adsorbent (Fe3O4/Au) for aqueous Hg(II) in contaminated water. Rietveld refinement on the XRD pattern confirmed that the Fe3O4/Au was synthesised. Mössbauer spectra exhibited broad and asymmetric resonance lines with two sextets which can be assigned to tetrahedral Fe3+; and octahedral Fe3+/Fe2+. The quantitative analysis of magnetite confirms that the sample shows around 3 wt.% Au and 97 wt.% partially oxidised Fe3O4. High surface area: 121 m2 g-1, average pore sizes: 6.3 nm and pore volume: 1.64 cm3 g-1. The kinetics data were better fitted with a pseudo-second-order and Dubinin-Radushkevich isotherm suggests the Hg(II) adsorption onto Fe3O4/Au nanoparticles was mainly by chemical adsorption forming complex with the Au metal immobilised on Fe3O4 surfaces. Adsorption capacity of 79.59 mg g-1. Ionic strength and co-existing ions had a slight influence on the adsorption capacity.
Collapse
Affiliation(s)
- Luiz Fernando Oliveira Maia
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, Brazil
| | - Mayra Soares Santos
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, Brazil
| | - Thainá Gusmão Andrade
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, Brazil
| | - Rodrigo de Carvalho Hott
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, Brazil
| | - Márcia Cristina da Silva Faria
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, Brazil
| | | | - Márcio César Pereira
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, Brazil
| | - Jairo Lisboa Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, Brazil
| |
Collapse
|
9
|
Eskandari E, Kosari M, Davood Abadi Farahani MH, Khiavi ND, Saeedikhani M, Katal R, Zarinejad M. A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115901] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Algae cathode microbial fuel cells for cadmium removal with simultaneous electricity production using nickel foam/graphene electrode. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Riahi Samani M, Ebrahimbabaie P, Vafaei Molamahmood H. Hexavalent chromium removal by using synthesis of polyaniline and polyvinyl alcohol. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:2305-2313. [PMID: 27858787 DOI: 10.2166/wst.2016.412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Over the past few years, heavy metals have been proved to be one of the most important contaminants in industrial wastewater. Chromium is one of these heavy metals, which is being utilized in several industries such as textile, finishing and leather industries. Since hexavalent chromium is highly toxic to human health, removal of it from the wastewater is essential for human safety. One of the techniques for removing chromium (VI) is the use of different adsorbents such as polyaniline. In this study, composites of polyaniline (PANi) were synthesized with various amounts of polyvinyl alcohol (PVA). The results showed that PANi/PVA removed around 76% of chromium at a pH of 6.5; the PVA has altered the morphology of the composites and increased the removal efficiency. Additionally, synthesis of 20 mg/L of PVA by PANi composite showed the best removal efficiency, and the optimal stirring time was calculated as 30 minutes. Moreover, the chromium removal efficiency was increased by decreasing the pH, initial chromium concentration and increasing stirring time.
Collapse
Affiliation(s)
- Majid Riahi Samani
- Department of Civil Engineering, Khomeinishahr Branch, Islamic Azad University, Khominishahr, Isfahan, Iran
| | - Parisa Ebrahimbabaie
- Department of Environment and Energy, Islamic Azad University of Tehran Science and Research Branch, Tehran, Iran
| | | |
Collapse
|