1
|
Ahmad A, Ghufran R. Microbial granules on reactors performance during organic butyrate digestion: clean production. Crit Rev Biotechnol 2023; 43:1236-1256. [PMID: 36130802 DOI: 10.1080/07388551.2022.2103641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/09/2022] [Indexed: 11/03/2022]
Abstract
This critical review for anaerobic degradation of complex organic compounds like butyrate using reactors has been enormously applied for biogas production. Biogas production rate has a great impact on: reactor granulation methanogenesis, nutrient content, shear velocity, organic loading and loss of nutrients taking place in the reactor continuously. Various technologies have been applied to closed anaerobic reactors to improve biogas production and treatment efficiency. Recent reviews showed that the application of closed anaerobic reactors can accelerate the degradation of organics like volatile fatty acid-butyrate and affect microbial biofilm formation by increasing the number of methanogens and increase methane production 16.5 L-1 CH4 L-1 POME-1. The closed anaerobic reactors with stable microbial biofilm and established organic load were responsible for the improvement of the reactor and methane production. The technology mentioned in this review can be used to monitor biogas concentration, which directly correlates to organic concentrations. This review attempts to evaluate interactions among the: degradation of organics, closed anaerobic reactors system, and microbial granules. This article provides a useful picture for the improvement of the degradation of organic butyrate for COD removal, biogas and methane production in an anaerobic closed reactor.
Collapse
Affiliation(s)
- Anwar Ahmad
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, Nizwa, Sultanate of Oman
| | - Roomana Ghufran
- Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP) Lebuhraya Tun Razak, Gambang, Malaysia
| |
Collapse
|
2
|
Mullai P, Vishali S, Sambavi SM, Dharmalingam K, Yogeswari MK, Vadivel Raja VC, Bharathiraja B, Bayar B, Abubackar HN, Al Noman MA, Rene ER. Energy generation from bioelectrochemical techniques: Concepts, reactor configurations and modeling approaches. CHEMOSPHERE 2023; 342:139950. [PMID: 37648163 DOI: 10.1016/j.chemosphere.2023.139950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
The process industries play a significant role in boosting the economy of any nation. However, poor management in several industries has been posing worrisome threats to an environment that was previously immaculate. As a result, the untreated waste and wastewater discarded by many industries contain abundant organic matter and other toxic chemicals. It is more likely that they disrupt the proper functioning of the water bodies by perturbing the sustenance of many species of flora and fauna occupying the different trophic levels. The simultaneous threats to human health and the environment, as well as the global energy problem, have encouraged a number of nations to work on the development of renewable energy sources. Hence, bioelectrochemical systems (BESs) have attracted the attention of several stakeholders throughout the world on many counts. The bioelectricity generated from BESs has been recognized as a clean fuel. Besides, this technology has advantages such as the direct conversion of substrate to electricity, and efficient operation at ambient and even low temperatures. An overview of the BESs, its important operating parameters, bioremediation of industrial waste and wastewaters, biodegradation kinetics, and artificial neural network (ANN) modeling to describe substrate removal/elimination and energy production of the BESs are discussed. When considering the potential for use in the industrial sector, certain technical issues of BES design and the principal microorganisms/biocatalysts involved in the degradation of waste are also highlighted in this review.
Collapse
Affiliation(s)
- P Mullai
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - S Vishali
- Department of Chemical Engineering, SRM Institute of Science and Engineering, Kattankulathur, 603 203, Tamil Nadu, India.
| | - S M Sambavi
- Department of Chemical and Biological Engineering, Energy Engineering with Industrial Management, University of Sheffield, Sheffield, United Kingdom.
| | - K Dharmalingam
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Telangana, India.
| | - M K Yogeswari
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - V C Vadivel Raja
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr.Sakunthala Engineering College, Chennai, 600062, Tamil Nadu, India.
| | - Büşra Bayar
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Haris Nalakath Abubackar
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Md Abdullah Al Noman
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| |
Collapse
|
3
|
O'Shea R, Yang Y, Kansagra K, Hickey DT, Kohler D, Murphy JD. Decarbonising distilled spirits: An assessment of the potential associated with anaerobic digestion of by-products at nine operational distilleries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:116976. [PMID: 36535142 DOI: 10.1016/j.jenvman.2022.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
This work aims to assess the potential biogas resource of by-products from the production of distilled spirits at 9 operational distilleries in 7 countries. An additional objective was the calculation of the energy resource and Scope 1 greenhouse gas (GHG) emission savings from the use of 21 by-products from the distilleries as a feedstock for anaerobic digestion (AD). To present a holistic perspective on the integration of AD with distilleries, an overview of additional criteria to be considered was provided. The biochemical methane potential (BMP) of the by-products associated with a selection of distilled spirits was experimentally determined. The BMP ranged from 161 L methane per kg volatile solid (LCH4/kgVS) to 589 LCH4/kgVS with an average value of 332 LCH4/kgVS. Biogas could reduce distillery fossil fuel demand by 49% when produced from un-processed by-products, by 66% when produced from a mixture of separated by-products, by 16% when produced from concentrated by-products and by 13% when produced from liquid by-products. The average Scope 1 GHG emission saving when using un-processed by-products was 52%, a mix of separated by-products allowed for a reduction of 66%, liquid by-products achieved an average reduction of 14%, and the use of concentrated by-products reduced GHG emissions by 17% on average. When evaluating which distilleries are "of most interest" for the integration of AD, other criteria to be considered include: by-product properties, the size of the AD facility required, the quantity of digestate produced, and the location of the distilleries in terms of both land availability to construct the AD facility and the proximity to land on which to spread digestate.
Collapse
Affiliation(s)
- Richard O'Shea
- Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; MaREI - SFI Research Centre for Energy Climate and Marine, Ireland.
| | - Yan Yang
- MaREI - SFI Research Centre for Energy Climate and Marine, Ireland
| | - Komal Kansagra
- MaREI - SFI Research Centre for Energy Climate and Marine, Ireland
| | - Daniel T Hickey
- MaREI - SFI Research Centre for Energy Climate and Marine, Ireland
| | | | - Jerry D Murphy
- Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; MaREI - SFI Research Centre for Energy Climate and Marine, Ireland
| |
Collapse
|
4
|
Pereira EL, Borges AC, da Silva GJ, Mounteer AH, Pinto FG, Tótola MR. Performance of an anaerobic sequencing batch reactor operating under high organic loading in treatment of biodiesel wastewater. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:785-798. [PMID: 36406624 PMCID: PMC9672234 DOI: 10.1007/s40201-022-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
Studies reporting the performance of anaerobic sequencing batch reactor (AnSBR) operating with high organic loadings are scarce. This study aimed to contribute to the technical and scientific literature by reporting the experience obtained when biodiesel wastewater was treated in an AnSBR applying organic loading rates (OLR) above those commonly used in batch reactor projects. For this, physicochemical and chromatographic analysis of the effluent were carried out. Further, the biomass was assessed chemically and morphologically, along with bacterial diversity characteristics. Supported by these analyses, the system performance was discussed in terms of COD remotion efficiency and buffering capacity. The AnSBR reached 10% of COD removal at the steady-state, which caused the biomass defragmentation and facilitated washout. This suggests that the startup and operation of AnSBR under optimized conditions with an average applied OLR of 11.3 gCOD L-1 d-1 worked as a pressure for the microbiota selection, stimulating the production of total volatile acids, which promoted system reduction efficiency and souring. In this context, food/microorganism ratios above 1.0 gCOD gTVS -1 d-1 can favor acidogenic activity, and total volatile acids/bicarbonate alkalinity concentration ratios above 1.9 may indicate acidification. The addition of support material for immobilizing/increasing biomass retention and/or operation under two-stage may be interesting alternatives for increasing AnSBR efficiencies under high OLRs. Graphical abstract
Collapse
|
5
|
New insights into microbial interactions and putative competitive mechanisms during the hydrogen production from tequila vinasses. Appl Microbiol Biotechnol 2022; 106:6861-6876. [PMID: 36071291 DOI: 10.1007/s00253-022-12143-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 06/02/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
This study aimed to characterize the prokaryotic community and putative microbial interactions involved in hydrogen (H2) production during the dark fermentation (DF) process, applying principal components analysis (PCA) to correlate changes in operational, physicochemical, and biological variables. For this purpose, a continuous stirred-tank reactor-type digester fed with tequila vinasses was operated at 24, 18, and 12 h of hydraulic retention times (HRTs) to apply organic loading rates of 20, 36, and 54 g-COD L-1 d-1, corresponding to stages I, II, and III, respectively. Results indicated high population dynamics for Archaea during the DF process toward a decrease in total sequences from 6299 to 99. Concerning the Bacteria community, lactic acid bacteria (LAB) were dominant reaching a relative abundance of 57.67%, while dominant H2-producing bacteria (HPB) decreased from 25.76% to 21.06% during stage III. Putative competitive exclusion mechanisms such as competition for substrates, bacteriocins production, and micronutrient depletion carried out by Archaea and non-H2-producing bacteria (non-HPB), especially LAB, could negatively impact the dominance of HPB such as Ethanoligenens harbinense and Clostridium tyrobutyricum. As a consequence, low maximal volumetric H2 production rate (672 mL-H2 L-1 d-1) and yield (3.88 mol-H2 assimilated sugars-1) were obtained. The global scenario obtained by PCA correlations suggested that C. tyrobutyricum positively impacted H2 molar yield through butyrate fermentation using the butyryl-CoA:acetate CoA transferase pathway, while the most abundant HPB E. harbinense decreased its relative abundance at the shortest HRT toward the dominance of non-HPB. This study provides new insights into the microbial interactions and helps to better understand the DF performance for H2 production using tequila vinasses as substrate. KEY POINTS: • E. harbinense and C. tyrobutyricum were responsible for H2 production. • Clostridiales used acetate and butyrate fermentations for H2 production. • LAB won the competition for sugars against Clostridiales during DF. • Putative bacteriocins production and micronutrients depletion could favor LAB.
Collapse
|
6
|
Díaz-Barajas SA, Garzón-Zúñiga MA, Moreno-Andrade I, Vigueras-Cortés JM, Barragán-Huerta BE. Acclimation of microorganisms for an efficient production of volatile fatty acids and biogas from mezcal vinasses in a dark fermentation process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2724-2731. [PMID: 34115626 DOI: 10.2166/wst.2021.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mezcal is an alcoholic artisanal drink made from agave plants in Mexico. Its production causes the generation of wastewater called vinasses, which are highly polluting residues due to its concentration of organic matter as chemical oxygen demand (COD) (35,000-122,000 mg/L) and acidity (pH < 4). Due to their organic content, these residues can be used in dark fermentation to obtain biogas, which is rich in hydrogen. In this work, the acclimation of inoculum by means of a dark fermentation process, in the presence of toxic compounds from mezcal vinasses was studied. The strategy of increasing the initial concentration of vinasse in each treatment cycle in a sequencing batch reactor (SBR) reactor was applied. It was possible to obtain a maximum biogas production of 984 ± 187 mL/L, from vinasses (18,367 ± 1,200 mg COD/L), with an organic matter removal efficiency of 20 ± 1%. A maximum generation of volatile fatty acids (VFA) of 980 ± 538 mg/L equivalent to a production of 74 ± 21% of the influent concentration and removal rate of organic matter of 1,125 ± 234 mg COD/L d-1 equivalent to a removal efficiency of 20 ± 4% was obtained from vinasses with a concentration of 19,648 ± 1,702 mg COD/L.
Collapse
Affiliation(s)
- S A Díaz-Barajas
- National Laboratory of Water Integral Management. Instituto Politécnico Nacional. CIIDIR, Unidad Durango. Calle Sigma 119, 20 de Noviembre II, 34220 Durango, Dgo, Mexico E-mail:
| | - M A Garzón-Zúñiga
- National Laboratory of Water Integral Management. Instituto Politécnico Nacional. CIIDIR, Unidad Durango. Calle Sigma 119, 20 de Noviembre II, 34220 Durango, Dgo, Mexico E-mail:
| | - I Moreno-Andrade
- Laboratory of Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, México
| | - J M Vigueras-Cortés
- National Laboratory of Water Integral Management. Instituto Politécnico Nacional. CIIDIR, Unidad Durango. Calle Sigma 119, 20 de Noviembre II, 34220 Durango, Dgo, Mexico E-mail:
| | - B E Barragán-Huerta
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City, 07738, México
| |
Collapse
|
7
|
Castillo-Monroy J, Godínez LA, Robles I, Estrada-Vargas A. Study of a coupled adsorption/electro-oxidation process as a tertiary treatment for tequila industry wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23699-23706. [PMID: 33010016 DOI: 10.1007/s11356-020-11031-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Vinasse wastewater from tequila industry that has been conventionally treated is usually characterized by a chemical oxygen demand (COD) above 150 mg L-1, which is the maximum content permitted for discharge by Mexican Regulation. In order to increase the wastewater quality, different processes were applied, and from the experimental results, the advantages and limitations were analyzed. In this way, although Fenton experiments showed acceptable COD removal efficiencies (79-90%), operation as well as cost limit its adoption as a viable technology. Therefore, additional experiments explored electro-Fenton (EF) as well as adsorption coupled to EF in a tubular reactor. The corresponding data revealed that there was no additional increase in COD removal performance probably due to the low oxygen solubility in the electrolytic solution and the high pH that prevents the existence of Fe2+ ions necessary for the Fenton mixture. In view of these results, when an activated carbon (AC) filter was coupled to polarization at current densities between 0.5 and 2 mA cm-2, removal efficiencies from 71 to 81%, corresponding to final COD of 78 to 33 mg L-1, were achieved. Also, the adsorbent surface was continuously regenerated, promoting a more efficient adsorption and a longer service life for the AC filter. In this case, by using a current density of 0.5 mA cm-2, COD was reduced to sufficiently small values for discharge into natural water bodies, maintaining low energy consumption and therefore acceptable operation costs.
Collapse
Affiliation(s)
- Jesús Castillo-Monroy
- Departamento de Estudios del Agua y de la Energía, Universidad de Guadalajara, Av. Nuevo Periférico 555, 45425, Tonalá, Jalisco, Mexico
| | - Luis A Godínez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C, Parque Tecnológico Querétaro, Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico.
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C, Parque Tecnológico Querétaro, Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Arturo Estrada-Vargas
- Departamento de Estudios del Agua y de la Energía, Universidad de Guadalajara, Av. Nuevo Periférico 555, 45425, Tonalá, Jalisco, Mexico.
| |
Collapse
|
8
|
Estrada-Arriaga EB, Reynoso-Deloya MG, Guillén-Garcés RA, Falcón-Rojas A, García-Sánchez L. Enhanced methane production and organic matter removal from tequila vinasses by anaerobic digestion assisted via bioelectrochemical power-to-gas. BIORESOURCE TECHNOLOGY 2021; 320:124344. [PMID: 33166883 DOI: 10.1016/j.biortech.2020.124344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 05/21/2023]
Abstract
In this study, showed a strategy to generate methane and remove organic matter removal from tequila vinasses through of anaerobic digestion assisted via bioelectrochemical power to-gas. Specific methanogenic activity (SMA) assays in batch mode were tested and a single-stage bioelectrochemical upflow anaerobic sludge blanket reactor (UASB) was evaluated to generate methane during tequila vinasses treatment. The results showed that the methane production in the bioelectrochemical UASB reactor applied at low voltage of 0.5 V and under HRT of 7 d was higher than the in the conventional UASB reactor. The specific methane production rate in bioelectrochemical UASB reactor was up to 2.9 NL CH4/L d, with a maximum methane yield of 0.32 NL CH4/g CODremoved. Similar COD removals were observed in the bioelectrochemical UASB reactor and conventional reactors (92-93%). High carbon dioxide reduction and hydrogen production were observed in the bioelectrochemical UASB reactor.
Collapse
Affiliation(s)
- Edson Baltazar Estrada-Arriaga
- Subcoordinación de Tratamiento de Aguas Residuales, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos C.P. 62550, Mexico.
| | - Ma Guadalupe Reynoso-Deloya
- Facultad de Ingeniería, Universidad Nacional Autónoma de México, Paseo Cuauhnahuac 8532, Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| | - Rosa Angélica Guillén-Garcés
- Universidad Politécnica del Estado de Morelos, Paseo Cuauhnáhuac 566, Lomas del Texcal, Jiutepec, Morelos 62550, Mexico
| | - Axel Falcón-Rojas
- Subcoordinación de Tecnologías Apropiadas, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| | - Liliana García-Sánchez
- Subcoordinación de Tecnologías Apropiadas, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| |
Collapse
|
9
|
Tequila Still Distillation Fractioned Residual Streams for Use in Biorefinery. ENERGIES 2020. [DOI: 10.3390/en13236222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tequila vinasses is a mixture made from up to six still distillation two-stage process residual effluents. First stage fractions: residual must (60%), heads (0.9%) and tails (20.0%); second stage fractions: non-evaporated (8.0%), heads (0.1%) and tails (1.0%); the result is a more complex effluent for its treatment or biorefining. The objectives of this study were to: (a) characterize the five still distillation volatile streams in the Tequila 100% Agave processing; compounds: methanol, ethanol, acetaldehyde, ethyl acetate, sec-butanol, n-propanol, iso-butanol, n-butanol, iso-amyl, n-amyl, and ethyl lactate were detected by gas chromatography; calculated chemical oxygen demand from chemical composition had very high values (53,760–1,239,220 mg/L); measurement of pH (3.24–4.80), color (38.6 UC Pt-Co max), turbidity (46.1 max), electrical conductivity (3.30–172.20 μS/cm), and solid content (0 mg/L) was also made; (b) report an energy analysis (2.02 × 109 KWh) and CO2 production (429 × 106 kg) in the Tequila industry during 2019; (c) up to date residues (365.2 × 106 kg agave bagasse, 1146.1 × 106 kg agave leaves and 3300.0 × 106 L agave vinasse) in 2019; (d) economic analysis, current tequila vinasses treatment price is 16.00 USD/m3 but could reach a considerable fraction value if is bio-refined, a break down component analysis reach for five volatile streams $51.23–$140.00 USD/m3.
Collapse
|
10
|
Mahmod SS, Azahar AM, Luthfi AAI, Abdul PM, Mastar MS, Anuar N, Takriff MS, Jahim JMD. Potential Utilisation of Dark-Fermented Palm Oil Mill Effluent in Continuous Production of Biomethane by Self-Granulated Mixed Culture. Sci Rep 2020; 10:9167. [PMID: 32514030 PMCID: PMC7280187 DOI: 10.1038/s41598-020-65702-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Two-stage anaerobic digestion of palm oil mill effluent (POME) is a promising method for converting the waste from the largest agricultural industry in Southeast Asia into a clean and sustainable energy. This study investigates the degradation of acid-rich effluent from the dark fermentation stage for the production of biomethane (BioCH4) in a 30-L continuous stirred-tank reactor (CSTR). The continuous methanogenic process was operated with varied HRTs (10 - 1 day) and OLRs (4.6-40.6 gCOD/L.d-1) under thermophilic conditions. Methanothermobacter sp. was the dominant thermophilic archaea that was responsible for the production rate of 4.3 LCH4/LPOME.d-1 and methane yield of 256.77 LCH4kgCOD at HRT of 2 d, which is the lowest HRT reported in the literature. The process was able to digest 85% and 64% of the initial POME's COD and TSS, respectively. The formation of methane producing granules (MPG) played a pivotal role in sustaining the efficient and productive anaerobic system. We report herein that the anaerobic digestion was not only beneficial in reducing the contaminants in the liquid effluent, but generating BioCH4 gas with a positive net energy gain of 7.6 kJ/gCOD.
Collapse
Affiliation(s)
- Safa Senan Mahmod
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Azratul Madihah Azahar
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Abdullah Amru Indera Luthfi
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Peer Mohamed Abdul
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Shahbudin Mastar
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nurina Anuar
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Sobri Takriff
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Jamaliah M D Jahim
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
- Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
11
|
Toledo-Cervantes A, Guevara-Santos N, Arreola-Vargas J, Snell-Castro R, Méndez-Acosta HO. Performance and microbial dynamics in packed-bed reactors during the long-term two-stage anaerobic treatment of tequila vinasses. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Yao D, Zhang X, Wang G, Chen TH, Wang J, Yue ZB, Wang Y. A novel parameter for evaluating the influence of iron oxide on the methanogenic process. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|