1
|
Liu B, Xin YN, Zou J, Khoso FM, Liu YP, Jiang XY, Peng S, Yu JG. Removal of Chromium Species by Adsorption: Fundamental Principles, Newly Developed Adsorbents and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020639. [PMID: 36677697 PMCID: PMC9861687 DOI: 10.3390/molecules28020639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Emerging chromium (Cr) species have attracted increasing concern. A majority of Cr species, especially hexavalent chromium (Cr(VI)), could lead to lethal effects on human beings, animals, and aquatic lives even at low concentrations. One of the conventional water-treatment methodologies, adsorption, could remove these toxic Cr species efficiently. Additionally, adsorption possesses many advantages, such as being cost-saving, easy to implement, highly efficient and facile to design. Previous research has shown that the application of different adsorbents, such as carbon nanotubes (carbon nanotubes (CNTs) and graphene oxide (GO) and its derivatives), activated carbons (ACs), biochars (BCs), metal-based composites, polymers and others, is being used for Cr species removal from contaminated water and wastewater. The research progress and application of adsorption for Cr removal in recent years are reviewed, the mechanisms of adsorption are also discussed and the development trend of Cr treatment by adsorption is proposed.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
| | - Ya-Nan Xin
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
| | - Jiao Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Fazal Muhammad Khoso
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yi-Ping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Sui Peng
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
- Correspondence: (S.P.); (J.-G.Y.); Tel./Fax: +86-731-88879616 (J.-G.Y.)
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Correspondence: (S.P.); (J.-G.Y.); Tel./Fax: +86-731-88879616 (J.-G.Y.)
| |
Collapse
|
3
|
Gao J, Zhang X, Yu J, Lei Y, Zhao S, Jiang Y, Xu Z, Cheng J. Cr(VI) removal performance and the characteristics of microbial communities influenced by the core-shell maifanite/ZnAl-layered double hydroxides (LDHs) substrates for chromium-containing surface water. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Zhang X, Gao J, Zhao S, Lei Y, Yuan Y, He C, Gao C, Deng L. Hexavalent chromium removal from aqueous solution by adsorption on modified zeolites coated with Mg-layered double hydroxides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32928-32941. [PMID: 31512128 DOI: 10.1007/s11356-019-06410-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, MgAl-LDHs and MgFe-LDHs were synthesized via co-precipitation method and in situ coated on pre-washed zeolites through dipping process in beaker. The obtained modified zeolites and original zeolites were utilized as substrates of constructed rapid infiltration systems (CRIS) to remove hexavalent chromium (Cr(VI)) in wastewater. Micro-morphology features and chemical composition of zeolites before and after modification were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence spectrometer (XRF). The SEM, XRD, and XRF results demonstrated the feasibility of LDHs coated on the surface of the original zeolites. Purification experiments in simulated CRIS showed that the Cr(VI) removal rates of zeolites/MgAl-LDHs increased by 110.03% on average every concentration (0.5-16 mg L-1) compared with the original zeolites under 24-h HRT. The adsorption capacity of zeolites/MgAl-LDHs reached 66.98 mg kg-1 at 32 mg L-1 initial Cr(VI) concentration, which is nearly twice that of the original zeolites (33.24 mg kg-1) and 1.5 times higher than that of zeolites/MgFe-LDHs (42.01 mg kg-1). Isothermal adsorption tests showed that the Freundlich isotherm equations gave better fitting to the adsorption process. And zeolites/MgAl-LDHs showed a best fit with pseudo-second-order model which meant that the adsorption of Cr(VI) by zeolites/MgAl-LDHs was dominated by chemisorption. Thermodynamic parameters showed that the process of adsorption for the three substrates was spontaneous and endothermic intrinsically. Zeolites/MgAl-LDHs also displayed nearly 60% desorption rate with low concentration eluent (0.01 mol L-1 NaCl). Therefore, zeolites/MgAl-LDHs were chosen out as an optimal substrate for removing Cr(VI) from wastewater in CRIS. Graphical Abstract.
Collapse
Affiliation(s)
- Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China.
| | - Jingtian Gao
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
- School of Energy and Environment, Inner Mongolia University of Science & Technology, Baotou, 014010, China
| | - Shuangjie Zhao
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Yu Lei
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Ye Yuan
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Chunyan He
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Chenguang Gao
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Lichu Deng
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| |
Collapse
|
5
|
Ajmani A, Shahnaz T, Subbiah S, Narayanasamy S. Hexavalent chromium adsorption on virgin, biochar, and chemically modified carbons prepared from Phanera vahlii fruit biomass: equilibrium, kinetics, and thermodynamics approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32137-32150. [PMID: 31494856 DOI: 10.1007/s11356-019-06335-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
A novel biosorbent Phanera vahlii fruit biomass (PVF) and its biochar and chemically modified forms were studied for the elimination of Cr(VI) from synthetic solutions. Biosorbents were characterized through BET, FTIR, FESEM, EDX, and TGA technique. The parameters influencing biosorption were optimized and found as pH 2.0, temperature 303 K, initial metal concentration 500 mg/L, and biosorbent dosage 0.5 g/L. The ideal contact time was 180 min for all biosorbents. Freundlich isotherm was found to have good correlation with investigational data, which indicated that biosorption takes place in multiple layer style. Langmuir adsorption isotherm yielded the highest biosorption capacity (Qo) to be 159.1, 225.1, 244.1, and 278.5 mg/g for Phanera vahlii fruit biomass, Phanera vahlii biochar, Phanera vahlii phosphoric acid activated carbon, and Phanera vahlii zinc chloride activated carbon, respectively. Experimental data had good correlation with pseudo-second-order kinetic model fitted. Thermodynamic studies indicated the biosorption process to be spontaneous, stable, and endothermic. Thus, it was concluded that Phanera vahlii fruit biomass and the derived activated carbons are promising biosorbents for adsorption of chromium from aqueous solutions. Graphical abstract.
Collapse
Affiliation(s)
- Abhishek Ajmani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Tasrin Shahnaz
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Senthilmurugan Subbiah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Selvaraju Narayanasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|