Hedayati MS, Li LY. Removal of polycyclic aromatic hydrocarbons from aqueous media using modified clinoptilolite.
JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020;
273:111113. [PMID:
32734893 DOI:
10.1016/j.jenvman.2020.111113]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Carcinogenic polycyclic aromatic hydrocarbons (PAHs) are widespread in the environment. In this study, the removal of PAHs from aqueous media was assessed using samples of clinoptilolite, a natural zeolite, pre-treated with 1 mol/L of NaCl, (Na pre-treated clinoptilolite, NC). Samples (10 g) of NC were separately modified with 5, 2, 2, and 20-mmol/L solutions of cetylpyridinium chloride (CPC), didodecyldimethyl ammonium bromide (DDAB), hexadecyltrimethylammonium bromide (HDTMA), and tetramethyl ammonium chloride (TMA) surfactants as potential cost-effective adsorbents. The kinetics, optimal sorbent dosage, and competitive effects were evaluated through batch adsorption tests using deionised water spiked with five PAHs (anthracene (50 μg/L), fluoranthene (100 μg/L), fluorene (100 μg/L), phenanthrene (100 μg/L), and pyrene (100 μg/L)). The surfactant non-modified (NC) and TMA-MC (modified clinoptilolite) exhibited PAH removal of <66% from the spiked concentration in aqueous solution, while CPC-MC, DDAB-MC, and HDTMA-MC achieved removal rates of >93% for the five PAHs after 24 h at a solid:liquid ratio of 1:100. The remaining concentrations of anthracene and fluoranthene were below 3 μg/L, and that of fluorene was <6 μg/L, lower than the water quality criteria of British Columbia, Canada, for protecting aquatic life. However, HDTMA-MC retained >83% of the fluorene. Over 80% of all PAHs were absorbed within 15 min for the CPC-MC and DDAB-MC, and the maximum adsorption was reached in <2 h. Three kinetic models were applied assuming pseudo-first-order, pseudo-second-order, and intra-particle equations, and the results were well-represented by the pseudo-second-order equation. The PAH sorption results indicated that the adsorption mechanism is based on PAH hydrophobicity, and π-π electron-donor-acceptor interaction with surfactant. CPC and DDAB with two long chain hydrocarbons had more PAH adsorption than HDTMA with one, and TMA with no long chain hydrocarbons (DDAB-MC > CPC-MC > HDTMA-MC ≫ TMA-MC > NC). With a solid:liquid ratio of 1:200, over 90%, 80%, and 70% of the anthracene, fluoranthene, and pyrene were adsorbed by the CPC-MC, DDAB-MC, and HDTMA-MC, respectively.
Collapse