1
|
Sanchis-Carbonell J, Carrero-Ferrer I, Sáez-Fernández A, Pedro-Monzonís M, Campíns-Falcó P, Montiel V. Towards a zero liquid discharge process from brine treatment: Water recovery, nitrate electrochemical elimination and potential valorization of hydrogen and salts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172060. [PMID: 38552986 DOI: 10.1016/j.scitotenv.2024.172060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
This research addresses the issues related with treatment and valorization of brines and nitrate decontamination of surface and ground waters. The objective was to approximate to zero liquid discharge (ZLD) minimizing the environmental impact of brines of an electrodialysis reversal water treatment plant (EDRWTP) as an example. The innovative in flow process was developed from lab to pre-industrial scale and joined several main concepts: ion-exchange equilibrium for softening or demineralization of brines; reversed osmosis to recover suitable water and to enrich the waste in nitrate for efficient electrochemical reduction of NO3- to N2; valorization of subproducts by direct use or by precipitation; and assessment of the whole process by measuring in-line several parameters. The achieved softening was around 98 % and the recovered water from this current by reversed osmosis was 75 %. The brine of this step (25 %) contained around 1500 mg/L of nitrate and it was treated by electrochemical reduction with a Bi/Sn cathode providing a gas current of 60 % of initial nitrate reduced to N2, O2, H2O, NH3 and at least 97 % of H2. The aqueous current contained around 40 % of initial nitrate as ammonium and nitrite lower than 50 and 5 mg/L, respectively. Hypochlorite was added to this last current for oxidizing ammonium and nitrite to N2 and nitrate, respectively, being nitrate and ammonium lower than 50 and 5 mg/L, respectively. After the obtained water was demineralized and conducted to the EDRWTP inlet. The recovery of insoluble salts as calcium carbonate, reuse of saline solutions for the regeneration of process resins and the potential use of hydrogen generated as a by-product during the electrochemical reduction are other possible utilities.
Collapse
Affiliation(s)
| | - Iván Carrero-Ferrer
- MINTOTA Research Group, Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | | | | | - P Campíns-Falcó
- MINTOTA Research Group, Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain.
| | - Vicente Montiel
- Institute of Electrochemistry, Universidad de Alicante, Spain.
| |
Collapse
|
2
|
Zhou Y, Peng H, Jiang L, Wang X, Tang Y, Xiao L. Control of cyanobacterial bloom and purification of bloom-laden water by sequential electro-oxidation and electro-oxidation-coagulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132729. [PMID: 37839377 DOI: 10.1016/j.jhazmat.2023.132729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
The outbreaks of cyanobacterial blooms have caused severe threat to aquatic ecosystem and public health. In this work, electrochemical technology with RuO2/IrO2/Ti (RIT) or/and Al as anode for cyanobacterial bloom control and simultaneous water purification were studied. Compared with RIT-Al and Al electrodes, RIT exhibited the highest effects on bloom algae inactivation and inhibition of algae regrowth. Live/dead analysis, SEM, intracellular reactive oxygen species (ROS) and antioxidant system activities revealed that RIT could disintegrate bloom flocs and damage embedded algal cells due to high intensity of oxidation. With the lysis of cyanobacterial bloom, high content of intracellular compounds containing organic carbon, nitrogen and phosphorus released, necessitating water quality restoration. In the subsequent water purification process, RIT-Al overtook RIT and Al in removal of organic and nutrient pollutants due to the complex effects of electro-oxidation, coagulation, co-precipitation, electro-nitrification and electro-denitrification. Therefore, sequential electro-oxidation and electro-oxidation-coagulation process was an effective method for control cyanobacteria bloom and simultaneous removal of DOM, microcystin-LR (MC-LR), nitrogen and phosphorus, which is a promising technology.
Collapse
Affiliation(s)
- Yingping Zhou
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Huijun Peng
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Lijuan Jiang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Xiaolin Wang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Yuqiong Tang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China.
| |
Collapse
|
3
|
Li D, Gao W, Geng C, Meng J, Guan Y, Liang J, Zhang L. Low-nitrite generation Cu-Co/Ti cathode materials for electrochemical nitrate reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18563-18576. [PMID: 36215015 DOI: 10.1007/s11356-022-23517-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
In order to reduce by-product nitrite, a more toxic compound than nitrate, and increase high value-added products ammonia in the electrochemical reduction nitrate process, the novel Cu-Co/Ti cathode material was applied in this process. In this paper, the electrochemical process was carried out in a single compartment electrolytic cell, and with Cu-Co/Ti electrode as cathode, identifying the effects of current density, pH, electrolytes in the nitrate reduction, and the distribution of products. The Cu-Co/Ti cathode exhibited 94.65% NO3--N (nitrate-N) removal, 0.18% NO2--N (nitrite-N) generation, and 40.86% NH4--N (ammonia-N) generation with the assistance of Na2SO4 electrolyte in 6 h at 10 mA cm-2 and pH 6. Compared with the Cu/Ti cathode, the higher nitrate removal ratio and lower nitrite generation ratio were obtained on the Cu-Co/Ti cathode. The excellent performance of Cu-Co/Ti cathode is ascribed to the synergy of Cu and Co, which couples the facilitation of nitrate conversion to nitrite and the acceleration of nitrite reduction on the Cu-Co/Ti cathode. The LSV curves showed that nitrate and nitrite might undergo indirect and direct reduction reactions on Cu-Co/Ti cathode. The possible pathways of nitrate reduction on the Cu-Co/Ti cathodes were proposed. These results highlight the viability of using the Cu-Co/Ti cathode developed at this work for the nitrate removal from contaminated waters. This study achieved low-nitrite generation by Cu-Co/Ti cathode during electrochemical nitrate reduction.
Collapse
Affiliation(s)
- Dan Li
- Shenyang University of Technology, Shenyang, 110870, China
| | - Weichun Gao
- Shenyang University of Technology, Shenyang, 110870, China
| | - Cong Geng
- Shenyang University of Technology, Shenyang, 110870, China
| | - Jing Meng
- Shenyang University of Technology, Shenyang, 110870, China
| | - Yinyan Guan
- Shenyang University of Technology, Shenyang, 110870, China
| | - Jiyan Liang
- Shenyang University of Technology, Shenyang, 110870, China.
| | - Libao Zhang
- SUT-LONGKING Institute Environmental Industrial Technology Co., Ltd, Shenyang, China
| |
Collapse
|
4
|
Chloride-Derived Bimetallic Cu-Fe Nanoparticles for High-Selective Nitrate-to-Ammonia Electrochemical Catalysis. Processes (Basel) 2022. [DOI: 10.3390/pr10040751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cu-based bimetallic materials have been widely reported as efficient catalysts for electrocatalytic nitrate reduction. However, the faradaic efficiency and selectivity are still far from satisfactory. Herein, Cu-Fe bimetallic nanoalloys with adjustable Cu/Fe ratios are successfully prepared through a reactive mechanical milling approach with CuCl2, FeCl3 and Na as the starting materials. The optimized Cu3Fe exhibits excellent nitrate conversion efficiency of 81.1% and 70.3% ammonia selectivity at −0.7 V vs. RHE within 6 h under 0.1 M Na2SO4 and 100 ppm NO3−. The Fe-introduction-induced upshift of the d-band center is identified to be beneficial for promoting nitrate adsorption on Cu3Fe. Moreover, favorable H generation under the assistance of Fe could effectively accelerate the stepwise hydrogenation during electrocatalytic nitrate reduction, resulting in significantly improved NH4+ selectivity. This work supplies valuable insights for the rational design of transition-metal-based bimetallic catalysts for electrocatalytic nitrate reduction.
Collapse
|
5
|
Wang C, Liu Z, Li C, Guo C. Progress on electrocatalytic reduction of nitrate on copper-based catalysts. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Sanjuán I, García-Cruz L, Solla-Gullón J, Expósito E, Montiel V. Bi–Sn nanoparticles for electrochemical denitrification: activity and selectivity towards N2 formation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135914] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Makover J, Hasson D, Huang Y, Semiat R, Shemer H. Electrochemical removal of nitrate from a Donnan dialysis waste stream. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:727-736. [PMID: 31661452 DOI: 10.2166/wst.2019.314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The objective of this work was to investigate electrochemical removal of nitrate from a high salinity waste stream generated by Donnan dialysis. Donnan dialysis for nitrate removal is a promising technique. It produces a distinctive composition of a high salinity waste stream of NaCl or Na2SO4 that requires a viable disposal method. The waste stream has the full anionic composition of contaminated groundwater, but the only cation is sodium. Experiments were conducted in a batch system setup. A copper cathode was chosen over brass, aluminum and graphite cathodes. A dimensionally stable anode (DSA), Ti/PbO2, was selected over a Ti/Pt anode. Electrochemical denitrification of high salinity Donnan dialysis nitrate wastes was successfully achieved, with different behavior exhibited in high salinity NaCl solution than in high salinity Na2SO4 solution. NaCl inhibited nitrate removal at high salinities while Na2SO4 did not. The maximum removals after 4 h operation in the high salinity wastes were 69 and 87% for the NaCl and Na2SO4 solutions respectively.
Collapse
Affiliation(s)
- Judah Makover
- GWRI Rabin Desalination Laboratory, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel E-mail:
| | - David Hasson
- GWRI Rabin Desalination Laboratory, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel E-mail:
| | - Yunyan Huang
- GWRI Rabin Desalination Laboratory, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel E-mail:
| | - Raphael Semiat
- GWRI Rabin Desalination Laboratory, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel E-mail:
| | - Hilla Shemer
- GWRI Rabin Desalination Laboratory, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel E-mail:
| |
Collapse
|