1
|
Fedyaeva ON, Shishkin AV, Vostrikov AA. Dynamic Adsorption and Desorption of Phenol on Activated Carbon in Media of Sub- and Supercritical Water. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122070053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
2
|
Al-Atta A, Sher F, Hazafa A, Zafar A, Iqbal HMN, Karahmet E, Lester E. Supercritical water oxidation of phenol and process enhancement with in situ formed Fe 2O 3 nano catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61896-61904. [PMID: 34559388 PMCID: PMC9464123 DOI: 10.1007/s11356-021-16390-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
During the past few decades, the treatment of hazardous waste and toxic phenolic compounds has become a major issue in the pharmaceutical, gas/oil, dying, and chemical industries. Considering polymerization and oxidation of phenolic compounds, supercritical water oxidation (SCWO) has gained special attention. The present study objective was to synthesize a novel in situ Fe2O3nano-catalyst in a counter-current mixing reactor by supercritical water oxidation (SCWO) method to evaluate the phenol oxidation and COD reduction at different operation conditions like oxidant ratios and concentrations. Synthesized nano-catalyst was characterized by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). TEM results revealed the maximum average particle size of 26.18 and 16.20 nm for preheated and non-preheated oxidant configuration, respectively. XRD showed the clear peaks of hematite at a 2θ value of 24, 33, 35.5, 49.5, 54, 62, and 64 for both catalysts treated preheated and non-preheated oxidant configurations. The maximum COD reduction and phenol oxidation of about 93.5% and 99.9% were observed at an oxidant ratio of 1.5, 0.75 s, 25 MPa, and 380 °C with a non-preheated H2O2 oxidant, while in situ formed Fe2O3nano-catalyst showed the maximum phenol oxidation of 99.9% at 0.75 s, 1.5 oxidant ratio, 25 MPa, and 380 °C. Similarly, in situ formed Fe2O3 catalyst presented the highest COD reduction of 97.8% at 40 mM phenol concentration, 1.0 oxidant ratio, 0.75 s residence time, 380 °C, and 25 MPa. It is concluded and recommended that SCWO is a feasible and cost-effective alternative method for the destruction of contaminants in water which showed the complete conversion of phenol within less than 1 s and 1.5 oxidant ratio.
Collapse
Affiliation(s)
- Ammar Al-Atta
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Oil and Gas Refinery Department, Al-Farabi University College, Baghdad, Iraq
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Abu Hazafa
- International Society of Engineering Science and Technology, Nottingham, UK
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ayesha Zafar
- International Society of Engineering Science and Technology, Nottingham, UK
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | - Emina Karahmet
- Department of Biochemistry, Faculty of Pharmacy, University of Modern Science, 88000, Mostar, Bosnia and Herzegovina
| | - Edward Lester
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
3
|
Xu T, Wang S, Li Y, Li J, Cai J, Zhang Y, Xu D, Zhang J. Review of the destruction of organic radioactive wastes by supercritical water oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149396. [PMID: 34426331 DOI: 10.1016/j.scitotenv.2021.149396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Organic materials, such as ion exchange resins, plastic, oils, and solvents, are widely used in the operation and decommission of nuclear facilities. The generated radioactive organic wastes are both radioactive and organic; therefore, the degradation of such wastes becomes more difficult. Due to delays in the disposal of radioactive organic wastes, potential safety risks are increasing. With the advantages of degrading refractory organics rapidly and thoroughly, supercritical water oxidation (SCWO) has become a potential alternative way to degrade radioactive organic wastes. This review focused on the degradation characteristics of different radioactive wastes from the perspective of potential practical applications. Some improved methods for facilitating the degradation of radioactive wastes by SCWO are considered and analyzed. Moreover, the kinetics and intermediate pathways of radioactive organic wastes are further analyzed. The distribution, migration and transformation of radionuclides during the SCWO reaction, as well as the further processing of radionuclides in gas-, liquid- and solid-phase products, were summarized and discussed. Furthermore, some fruitful areas for further work were reviewed for the highly efficient degradation of radioactive organic wastes. This review can provide useful information and guidance for the industrial applications of SCWO treatment for radioactive wastes.
Collapse
Affiliation(s)
- Tiantian Xu
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuzhong Wang
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yanhui Li
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Jianna Li
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jianjun Cai
- School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Yishu Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Donghai Xu
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| |
Collapse
|
4
|
Fedyaeva ON, Morozov SV, Vostrikov AA. Supercritical water oxidation of chlorinated waste from pulp and paper mill. CHEMOSPHERE 2021; 283:131239. [PMID: 34182639 DOI: 10.1016/j.chemosphere.2021.131239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The article presents the research results of the oxidation of watered toxic waste from the pulp and paper industry (sludge-lignin, the empirical formula of organic matter CH1.51N0.05S0.03Cl0.01O0.54) in supercritical water-oxygen (SCW/O2) fluid. The experiments were carried out using a flow tube reactor at a pressure of 25 MPa, temperature gradient along its vertical axis (from top to bottom: 390-600 °C), sludge-lignin flow rate of 9.5-14.5 g/min, oxygen ratio OR = 0.73-2.52, using NaOH (1.6 wt%) as a catalyst. Employing gas chromatography - mass spectrometry, polychlorophenols were identified in the composition of sludge-lignin, in which 2,4,6-trichlorophenol was the main component. The total yield of extracted phenols and chlorophenols per sludge-lignin organic matter was 20.82 and 2.88 μg/g, respectively. It is revealed that the conversion rate of sludge-lignin in SCW/O2 fluid is limited by heterogeneous oxidation of the carbonized residue, and is determined by the O2 content in the reaction mixture. At OR ≥ 1.16, only CO2, CO, N2, and N2O were detected in the volatile oxidation products. An increase in OR from 0.73 to 2.52 leads to a decrease in the total content of phenols (from 45540.1 to 129.3 μg/dm3) and chlorophenols (from 51.4 to 2.2 μg/dm3) in the water collected at the reactor outlet. It is shown that 2,6-dichlorophenol and 2-chlorophenol are the most resistant to oxidation. From the analysis of the initial sludge-lignin and mineral residues, it follows that the bulk of the chlorine contained in its organic matter is converted into NaCl in the course of oxidation.
Collapse
Affiliation(s)
- Oxana N Fedyaeva
- Kutateladze Institute of Thermophysics SB RAS, 1, Acad. Lavrentyev Ave., Novosibirsk, Russia.
| | - Sergey V Morozov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9, Acad. Lavrentyev Ave., Novosibirsk, Russia
| | - Anatoly A Vostrikov
- Kutateladze Institute of Thermophysics SB RAS, 1, Acad. Lavrentyev Ave., Novosibirsk, Russia
| |
Collapse
|
5
|
Xu T, Wang S, Li Y, Zhang J, Li J, Zhang Y, Yang C. Optimization and Mechanism Study on Destruction of the Simulated Waste Ion-Exchange Resin from the Nuclear Industry in Supercritical Water. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tiantian Xu
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Shuzhong Wang
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Yanhui Li
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Jie Zhang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, Shaanxi, China
| | - Jianna Li
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Yishu Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Chuang Yang
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| |
Collapse
|
6
|
Zhang H, Zhang X, Ding L. Partial oxidation of phenol in supercritical water with NaOH and H 2O 2: Hydrogen production and polymer formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137985. [PMID: 32208288 DOI: 10.1016/j.scitotenv.2020.137985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 05/18/2023]
Abstract
The catalytic supercritical water partial oxidation of phenol using H2O2 as oxidant in the presence of NaOH was explored to enhance hydrogen production and inhibit phenol polymerization. The results indicated that H2 production was enhanced in the presence of NaOH when phenol supercritical water oxidation was controlled at a lower O/C ratio. Compared with the individual catalytic partial oxidation of phenol, the reaction with NaOH and H2O2 simultaneously enhanced H2 production and inhibited polycyclic polymer generation at O/C ratios below 0.5. A peak hydrogen gasification efficiency value of 62.35% was observed at an O/C ratio of 0.3 with 1.0 wt% NaOH, and a phenol removal efficiency of nearly 75% was reported. Phenol polymerization was effectively inhibited for reaction times limited to 50 s. Moreover, other phenol reaction pathways reported in the literature were compared with the partial oxidation of phenol in supercritical water with NaOH and H2O2.
Collapse
Affiliation(s)
- Huiwen Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, Jiangsu 210098, China.
| | - Xiaoman Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| |
Collapse
|
7
|
Zhang H, Song J, Zhang M, Xiang C, Li B, Qin Y. Analysis of chemical characteristics of lignite upgrading wastewater and its agricultural utilization. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1530-1540. [PMID: 32616704 DOI: 10.2166/wst.2020.242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The lignite upgrading wastewater (LUW) produced in the drying and upgrading process of lignite cannot be discharged directly. Conventional wastewater treatment methods are usually costly and unable to achieve efficient utilization of water resources which are rich in activity components. In this study, the water quality analysis showed that LUW belonged to seriously polluted waters with low pH and very high total nitrogen content. Fifty-five compounds, mainly phenols and organic acids, were identified by gas chromatography-mass spectrometry (GC-MS) analysis. The study confirmed that the LUW, after being diluted to an appropriate concentration, could significantly promote the growth of wheat seedlings. The phenols and organic acids were the activity material basis of LUW, which promoted seed germination possibly through playing a role similar to plant hormones and simultaneously enhancing the utilization of nutrient elements. LUW had the natural advantages of directly developing high-end liquid fertilizers in terms of its physical form, chemical composition, biological activity, safety and economy. This study confirmed the feasibility of applying LUW to agricultural field as liquid fertilizer only through simple dilution without other treatments. Applying LUW as liquid fertilizer can not only supply a fertilizer product with low production cost and outstanding efficacy, but also provide an efficient and green way for the treatment of upgrading wastewater, which utilize the LUW as natural resources instead of purifying and discharging.
Collapse
Affiliation(s)
- Huifen Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China; Huifen Zhang and Ji Song contributed equally to this work
| | - Ji Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China E-mail: ; Huifen Zhang and Ji Song contributed equally to this work
| | - Mi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China E-mail:
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China E-mail:
| | - Baocai Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China E-mail:
| | - Yi Qin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China E-mail:
| |
Collapse
|