1
|
Nitrogen Addition Effects on Wetland Soils Depend on Environmental Factors and Nitrogen Addition Methods: A Meta-Analysis. WATER 2022. [DOI: 10.3390/w14111748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Identifying the effects of nitrogen (N) addition under key environmental factors and N addition methods can aid in understanding the paradigm of N addition in wetland ecosystems. In this study, we conducted a meta-analysis of 30 field studies of wetland ecosystems and selected 14 indicators. We found that the changes in soil TN and SOC contributed significantly to the changes in microbial community structure under N additions. The environmental factors and N addition methods altered the direction or size of N addition effects on wetland soil properties, microbial diversity and key C and N cycling genes. N-limited conditions and climate conditions determined the N addition effect direction on SOC, and saline-alkali conditions determined the N addition effect direction on microbial diversity and AOB abundance. Environmental heterogeneity and N addition methods determine the response of wetland soil to nitrogen application. Therefore, it is crucial to study the effects of environmental factors and N addition methods on the N deposition of wetland soils.
Collapse
|
2
|
Patterns of Structural and Functional Bacterioplankton Metacommunity along a River under Anthropogenic Pressure. SUSTAINABILITY 2021. [DOI: 10.3390/su132011518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacteria, an integral part of aquatic ecosystems, are responsible for the circulation of matter and flow of energy. Since bacterioplankton rapidly responds to any natural and human-induced disturbances in the environment, it can serve as a bioindicator of these changes. Knowing factors that shape the microbial community structure may help the sustainable management of the water environment. However, the identification of environmental signals affecting the structure and function of bacterioplankton is still a challenge. The study analyses the impact of environmental variables on basic microbial parameters, which determines the effectiveness of ecological processes in rivers. Measurements of bacterioplankton abundance (BA) and extracellular enzyme activity (EEA) were based on fluorescent markers. The bacterial community structure was determined by 16S rRNA gene amplicon sequencing (Illumina). The results indicate spatial variation in bacterioplankton abundance. Temporal variation was not significant. Lipase and aminopeptidase had the highest level of activity. EEA was not correlated with bacterial abundance but was significantly correlated with temperature. Moreover, differences in lipase, α-glucosidase and β-glucosidase activity levels between spring and summer were noted. At the same time, the location of sampling site had a significant influence on aminopeptidase activity. The taxonomic analysis of bacterioplankton communities in the Brda River indicated that, although different numbers of OTUs were recorded in the studied river sections, bacterioplankton biodiversity did not change significantly along the river with distance downstream. Anthropogenically modified river sections were characterized by the dominance of Flavobacterium (Bacterioidetes) and hgcl clade (Actinobacteria) taxa, known for their ability to produce extracellular enzymes. PCoA analysis revealed that the sites located in the lower river course (urban area) had the most similar bacterial community structure (β-diversity). The study provides new insight into the changes in microbial communities along the river and emphasizes the potential impact of anthropogenization on these processes.
Collapse
|
3
|
Hoke AK, Reynoso G, Smith MR, Gardner MI, Lockwood DJ, Gilbert NE, Wilhelm SW, Becker IR, Brennan GJ, Crider KE, Farnan SR, Mendoza V, Poole AC, Zimmerman ZP, Utz LK, Wurch LL, Steffen MM. Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS One 2021; 16:e0257017. [PMID: 34550975 PMCID: PMC8457463 DOI: 10.1371/journal.pone.0257017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates (Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp (Exiguobacterium sp. JMULE1) to 5.7 Mbp (Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis. Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai (Taihu) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis.
Collapse
Affiliation(s)
- Alexa K. Hoke
- James Madison University, Harrisonburg, VA, United States of America
| | - Guadalupe Reynoso
- James Madison University, Harrisonburg, VA, United States of America
- Virginia Tech, Blacksburg, VA, United States of America
| | - Morgan R. Smith
- James Madison University, Harrisonburg, VA, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - Malia I. Gardner
- James Madison University, Harrisonburg, VA, United States of America
| | | | - Naomi E. Gilbert
- James Madison University, Harrisonburg, VA, United States of America
- University of Tennessee, Knoxville, TN, United States of America
| | | | | | - Grant J. Brennan
- James Madison University, Harrisonburg, VA, United States of America
| | | | - Shannon R. Farnan
- James Madison University, Harrisonburg, VA, United States of America
| | - Victoria Mendoza
- James Madison University, Harrisonburg, VA, United States of America
| | - Alison C. Poole
- James Madison University, Harrisonburg, VA, United States of America
| | | | - Lucy K. Utz
- James Madison University, Harrisonburg, VA, United States of America
| | - Louie L. Wurch
- James Madison University, Harrisonburg, VA, United States of America
| | - Morgan M. Steffen
- James Madison University, Harrisonburg, VA, United States of America
- * E-mail:
| |
Collapse
|