1
|
Xiao H, Tan J, Li M, Yuan Z, Zhou H. The mechanism of Se(IV) multisystem resistance in Stenotrophomonas sp. EGS12 and its prospect in selenium-contaminated environment remediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131358. [PMID: 37027916 DOI: 10.1016/j.jhazmat.2023.131358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Human activities have led to elevated levels of selenium (Se) in the environment, which poses a threat to ecosystems and human health. Stenotrophomonas sp. EGS12 (EGS12) has been identified as a potential candidate for the bioremediation of repair selenium-contaminated environment because of its ability to efficiently reduce Se(IV) to form selenium nanospheres (SeNPs). To better understand the molecular mechanism of EGS12 in response to Se(IV) stress, a combination of transmission electron microscopy (TEM), genome sequencing techniques, metabolomics and transcriptomics were employed. The results indicated that under 2 mM Se(IV) stress, 132 differential metabolites (DEMs) were identified, and they were significantly enriched in metabolic pathways such as glutathione metabolism and amino acid metabolism. Under the Se(IV) stress of 2 mM, 662 differential genes (DEGs) involved in heavy metal transport, stress response, and toxin synthesis were identified in EGS12. These findings suggest that EGS12 may respond to Se(IV) stress by engaging various mechanisms such as forming biofilms, repairing damaged cell walls/cell membranes, reducing Se(IV) translocation into cells, increasing Se(IV) efflux, multiplying Se(IV) reduction pathways and expelling SeNPs through cell lysis and vesicular transport. The study also discusses the potential of EGS12 to repair Se contamination alone and co-repair with Se-tolerant plants (e.g. Cardamine enshiensis). Our work provides new insights into microbial tolerance to heavy metals and offers valuable information for bio-remediation techniques on Se(IV) contamination.
Collapse
Affiliation(s)
- Hongshi Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, No.1Nongda Road, Furong, Changsha 410000, China
| | - Jun Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Mengjia Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, No.1Nongda Road, Furong, Changsha 410000, China
| | - Zhihui Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling, Yongzhou 425199, China.
| | - Haiyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, No.1Nongda Road, Furong, Changsha 410000, China.
| |
Collapse
|
2
|
Hu C, Nie Z, Shi H, Peng H, Li G, Liu H, Li C, Liu H. Selenium uptake, translocation, subcellular distribution and speciation in winter wheat in response to phosphorus application combined with three types of selenium fertilizer. BMC PLANT BIOLOGY 2023; 23:224. [PMID: 37101116 PMCID: PMC10134582 DOI: 10.1186/s12870-023-04227-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Selenium (Se) deficiency causes a series of health disorders in humans, and Se concentrations in the edible parts of crops can be improved by altering exogenous Se species. However, the uptake, transport, subcellular distribution and metabolism of selenite, selenate and SeMet (selenomethionine) under the influence of phosphorus (P) has not been well characterized. RESULTS The results showed that increasing the P application rate enhanced photosynthesis and then increased the dry matter weight of shoots with selenite and SeMet treatment, and an appropriate amount of P combined with selenite treatment increased the dry matter weight of roots by enhancing root growth. With selenite treatment, increasing the P application rate significantly decreased the concentration and accumulation of Se in roots and shoots. P1 decreased the Se migration coefficient, which could be attributed to the inhibited distribution of Se in the root cell wall, but increased distribution of Se in the root soluble fraction, as well as the promoted proportion of SeMet and MeSeCys (Se-methyl-selenocysteine) in roots. With selenate treatment, P0.1 and P1 significantly increased the Se concentration and distribution in shoots and the Se migration coefficient, which could be attributed to the enhanced proportion of Se (IV) in roots but decreased proportion of SeMet in roots. With SeMet treatment, increasing the P application rate significantly decreased the Se concentration in shoots and roots but increased the proportion of SeCys2 (selenocystine) in roots. CONCLUSION Compared with selenate or SeMet treatment, treatment with an appropriate amount of P combined with selenite could promote plant growth, reduce Se uptake, alter Se subcellular distribution and speciation, and affect Se bioavailability in wheat.
Collapse
Affiliation(s)
- Caixia Hu
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China
| | - Zhaojun Nie
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China.
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hongyu Peng
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China
| | - Guangxin Li
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China
| | - Haiyang Liu
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China
| | - Chang Li
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China
| | - Hongen Liu
- Resources and Environment College, Henan Agricultural University, Jinshui District, No. 63, Nongye RoadHenan Province, Zhengzhou, 450002, China.
| |
Collapse
|
3
|
Mushtaq NU, Alghamdi KM, Saleem S, Shajar F, Tahir I, Bahieldin A, Rehman RU, Hakeem KR. Selenate and selenite transporters in proso millet: Genome extensive detection and expression studies under salt stress and selenium. FRONTIERS IN PLANT SCIENCE 2022; 13:1060154. [PMID: 36531352 PMCID: PMC9748351 DOI: 10.3389/fpls.2022.1060154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Crops are susceptible to a variety of stresses and amongst them salinity of soil is a global agronomic challenge that has a detrimental influence on crop yields, thus posing a severe danger to our food security. Therefore, it becomes imperative to examine how plants respond to salt stress, develop a tolerance that allows them to live through higher salt concentrations and choose species that can endure salt stress. From the perspective of food, security millets can be substituted to avoid hardships because of their efficiency in dealing with salt stress. Besides, this problem can also be tackled by using beneficial exogenous elements. Selenium (Se) which exists as selenate or selenite is one such cardinal element that has been reported to alleviate salt stress. The present study aimed for identification of selenate and selenite transporters in proso millet (Panicum miliaceum L.), their expression under NaCl (salt stress) and Na2SeO3 (sodium selenite)treatments. This study identified eight transporters (RLM65282.1, RLN42222.1, RLN18407.1, RLM74477.1, RLN41904.1, RLN17428.1, RLN17268.1, RLM65753.1) that have a potential role in Se uptake in proso millet. We analyzed physicochemical properties, conserved structures, sub-cellular locations, chromosome location, molecular phylogenetic analysis, promoter regions prediction, protein-protein interactions, three-dimensional structure modeling and evaluation of these transporters. The analysis revealed the chromosome location and the number of amino acids present in these transporters as RLM65282.1 (16/646); RLN42222.1 (1/543); RLN18407.1 (2/483); RLM74477.1 (15/474); RLN41904.1 (1/521); RLN17428.1 (2/522); RLN17268.1(2/537);RLM65753.1 (16/539). The sub-cellular locations revealed that all the selenite transporters are located in plasma membrane whereas among selenate transporters RLM65282.1 and RLM74477.1 are located in mitochondria and RLN42222.1 and RLN18407.1 in chloroplast. The transcriptomic studies revealed that NaCl stress decreased the expression of both selenate and selenite transporters in proso millet and the applications of exogenous 1µM Se (Na2SeO3) increased the expression of these Se transporter genes. It was also revealed that selenate shows similar behavior as sulfate, while selenite transport resembles phosphate. Thus, it can be concluded that phosphate and sulphate transporters in millets are responsible for Se uptake.
Collapse
Affiliation(s)
- Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid M. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Faamiya Shajar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
4
|
Motlagh MK, Noroozifar M, Sodhi RNS, Kraatz H. Development of a Bacterial Enzyme‐Based Biosensor for the Detection and Quantification of Selenate. Chemistry 2022; 28:e202200953. [DOI: 10.1002/chem.202200953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mozhgan Khorasani Motlagh
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail Toronto M1C1A4 Ontario Canada
| | - Meissam Noroozifar
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail Toronto M1C1A4 Ontario Canada
| | - Rana N. S. Sodhi
- Ontario Centre for Characterisation of Advanced Materials Department of Chemical Engineering & Applied Chemistry University of Toronto 2200 College Street Toronto M5S 3E5 Ontario Canada
| | - Heinz‐Bernhard Kraatz
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail Toronto M1C1A4 Ontario Canada
- Department of Chemistry University of Toronto 280 St. George St. Toronto M5S 3H6 Ontario Canada
| |
Collapse
|
5
|
Li J, Otero-Gonzalez L, Parao A, Tack P, Folens K, Ferrer I, Lens PNL, Du Laing G. Valorization of selenium-enriched sludge and duckweed generated from wastewater as micronutrient biofertilizer. CHEMOSPHERE 2021; 281:130767. [PMID: 34022598 DOI: 10.1016/j.chemosphere.2021.130767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/31/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Selenium (Se) is an essential trace element for humans and animals with a narrow window between deficiency and toxicity levels. Application of conventional chemical Se fertilizers to increase the Se content of crops in Se deficient areas could result in environmental contamination due to the fast leaching of inorganic Se. Slow-release Se-enriched biofertilizers produced from wastewater treatment may therefore be beneficial. In this study, the potential of Se-enriched biomaterials (sludge and duckweed) as slow-release Se biofertilizers was evaluated through pot experiments with and without planted green beans (Phaseolus vulgaris). The Se concentration in the bean tissues was 1.1-3.1 times higher when soils were amended with Se-enriched sludge as compared to Se-enriched duckweed. The results proved that the Se released from Se-enriched biomaterials was efficiently transformed to health-beneficial selenoamino acids (e.g., Se-methionine, 76-89%) after being taken up by beans. The Se-enriched sludge, containing mainly elemental Se, is considered as the preferred slow-release Se biofertilizer and an effective Se source to produce Se-enriched crops for Se-deficient populations, as shown by the higher Se bioavailability and lower organic carbon content. This study could offer a theoretical reference to choose an environmental-friendly and sustainable alternative to conventional mineral Se fertilizers for biofortification, avoiding the problem of Se losses by leaching from chemical Se fertilizers while recovering resources from wastewater. This could contribute to the driver for a future circular economy.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politecnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain.
| | - Lila Otero-Gonzalez
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Amelia Parao
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Tack
- XMI Research Group, Department of Chemistry, Campus Sterre (S12), Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Karel Folens
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politecnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, 2601, DA, Delft, the Netherlands
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
6
|
Farkas B, Vojtková H, Bujdoš M, Kolenčík M, Šebesta M, Matulová M, Duborská E, Danko M, Kim H, Kučová K, Kisová Z, Matúš P, Urík M. Fungal Mobilization of Selenium in the Presence of Hausmannite and Ferric Oxyhydroxides. J Fungi (Basel) 2021; 7:jof7100810. [PMID: 34682232 PMCID: PMC8539610 DOI: 10.3390/jof7100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
Bioleaching of mineral phases plays a crucial role in the mobility and availability of various elements, including selenium. Therefore, the leachability of selenium associated with the surfaces of ferric and manganese oxides and oxyhydroxides, the prevailing components of natural geochemical barriers, has been studied in the presence of filamentous fungus. Both geoactive phases were exposed to selenate and subsequently to growing fungus Aspergillus niger for three weeks. This common soil fungus has shown exceptional ability to alter the distribution and mobility of selenium in the presence of both solid phases. The fungus initiated the extensive bioextraction of selenium from the surfaces of amorphous ferric oxyhydroxides, while the hausmannite (Mn3O4) was highly susceptible to biodeterioration in the presence of selenium. This resulted in specific outcomes regarding the selenium, iron, and manganese uptake by fungus and residual selenium concentrations in mineral phases as well. The adverse effects of bioleaching on fungal growth are also discussed.
Collapse
Affiliation(s)
- Bence Farkas
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB–Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic; (H.V.); (K.K.)
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Martin Šebesta
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Michaela Matulová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Eva Duborská
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Martin Danko
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia;
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea;
- Department of Environment and Energy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea
| | - Kateřina Kučová
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB–Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic; (H.V.); (K.K.)
| | - Zuzana Kisová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia;
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
- Correspondence:
| |
Collapse
|
7
|
Li J, Otero-Gonzalez L, Michiels J, Lens PNL, Du Laing G, Ferrer I. Production of selenium-enriched microalgae as potential feed supplement in high-rate algae ponds treating domestic wastewater. BIORESOURCE TECHNOLOGY 2021; 333:125239. [PMID: 33940503 DOI: 10.1016/j.biortech.2021.125239] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
This study assessed the selenium (Se) removal efficiency of two pilot-scale high-rate algae ponds (HRAPs) treating domestic wastewater and investigated the production of Se-enriched microalgae as potential feed supplement. The HRAP-Se had an average Se, NH4+-N, total phosphorus and COD removal efficiency of, respectively, 43%, 93%, 77%, and 70%. Inorganic Se taken up by the microalgae was mainly (91%) transformed to selenoamino acids, and 49-63% of Se in the Se-enriched microalgae was bioaccessible for animals. The crude protein content (48%) of the microalgae was higher than that of soybeans, whereas the essential amino acid content was comparable. Selenium may induce the production of the polyunsaturated fatty acids omega-3 and omega-6 in microalgae. Overall, the production of Se-enriched microalgae in HRAPs may offer a promising alternative for upgrading low-value resources into high-value feed supplements, supporting the drive to a circular economy.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain.
| | - Lila Otero-Gonzalez
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, 2601 DA Delft, the Netherlands
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ivet Ferrer
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain
| |
Collapse
|