1
|
Pei S, Fan X, Qiu C, Liu N, Li F, Li J, Qi L, Wang S. Effect of biochar addition on the anaerobic digestion of food waste: microbial community structure and methanogenic pathways. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:894-907. [PMID: 39141040 DOI: 10.2166/wst.2024.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
This study assessed the effects of the addition of biochar prepared at 700 °C with different dosages on the anaerobic digestion of food waste. The biochar addition at a concentration of 10.0 g/L increased the cumulative methane yield by 128%, and daily methane production was also significantly promoted. The addition of biochar derived from poplar sawdust significantly increased the relative abundance of dominant bacteria for anaerobic digestion by 85.54-2530% and promoted the degradation of refractory organic matter and the transfer of materials between the hydrolysis and acid production stages. Further analysis has demonstrated that Bathyarchaeia and hydrogenotrophic methanogens were enriched by the biochar addition. Meanwhile, the relative abundances of functional genes, including C5-branched dibasic acid metabolism, and pyruvate metabolism, were increased by 11.38-26.27%. The relative abundances of genes related to major amino acid metabolism, including histidine metabolism, lysine biosynthesis, and phenylalanine, tyrosine, and tryptophan biosynthesis, were increased by 11.96-15.71%. Furthermore, the relative abundances of genes involved in major replication and repair were increased by 14.76-22.76%, and the major folding, sorting, degradation, and translation were increased by 14.47-19.95%, respectively. The relative abundances of genes related to major membrane transport and cell motility were increased by 10.02 and 83.09%, respectively.
Collapse
Affiliation(s)
- Siyao Pei
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiaodan Fan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China E-mail:
| | - Fei Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jiakang Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Li Qi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| |
Collapse
|
2
|
Gao Z, Shan D, He J, Huang T, Mao Y, Tan H, Shi H, Li T, Xie T. Effects and mechanism on cadmium adsorption removal by CaCl 2-modified biochar from selenium-rich straw. BIORESOURCE TECHNOLOGY 2023; 370:128563. [PMID: 36592869 DOI: 10.1016/j.biortech.2022.128563] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
As every-one knows, cadmium contamination poses a significant and permanent threat to people and aquatic life. Therefore, research on how to remove cadmium from wastewater is essential to protect the natural environment. In this study, agricultural and forestry waste straw sprayed with selenium-enriched foliar fertilizer was prepared as biochar, which was altered by calcium chloride (CaCl2) to remove Cd2+ from water. The outcomes demonstrated that biochar generated by pyrolysis at 700 °C (BC700) had the best adsorption effect. Secondly, pseudo-second-order kinetics and Langmuir adsorption models were used to predict the Cd2+ adsorption. Finally, electrostatic adsorption, ion exchange, and complexation of oxygen functional groups (OFGs) were demonstratedto be the main adsorption mechanisms. These conclusions indicate that selenium-rich straw biochar is a novel adsorbent for agroforestry waste recovery. Meanwhile, this work will offer a promising strategy for the overall utilization of rice straw.
Collapse
Affiliation(s)
- Zongyu Gao
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou 404100, China; Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Dexin Shan
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Jiahong He
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Tao Huang
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Yuan Mao
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Haiping Tan
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Huiting Shi
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou 404100, China; Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Tingzhen Li
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou 404100, China
| | - Taiping Xie
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China; School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Tu P, Zhang G, Wei G, Li J, Li Y, Deng L, Yuan H. Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants. BIORESOUR BIOPROCESS 2022; 9:131. [PMID: 38647942 PMCID: PMC10991468 DOI: 10.1186/s40643-022-00618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
This work aimed to investigate the effect of pyrolysis temperature on the yield and properties of biochars synthesized from herbaceous and woody plants. Four typical materials, including two herbaceous plants (rice straw, corn straw) and two woody plants (camellia oleifera shells, garden waste), were used in the experiments under five operating temperatures (from 300 °C to 700 °C, with an interval of 100 °C). The results showed biochar derived from herbaceous plants had a significantly higher pH (from 7.68 to 11.29 for RS), electrical conductivity (EC, from 6.5 Ms cm-1 to 13.2 mS cm-1 for RS), cation exchange conductivity (CEC, from 27.81 cmol kg-1 to 21.69 cmol kg-1 for RS), and ash content (from 21.79% to 32.71% for RS) than the biochar from woody plants, but the volatile matter (VM, from 42.23% to 11.77% for OT) and specific surface area (BET, from 2.88 m2 g-1 to 301.67 m2 g-1 for OT) in the woody plant-derived biochar were higher. Except for CEC and VM, all the previously referred physicochemical characteristics in the as-prepared biochars increased with the increasing pyrolysis temperature, the H/C and O/C values of herbaceous and woody plant-derived biochar were lower than 0.9 and 0.3, respectively, confirming their potential as the material for carbon sequestration. The results revealed that biochar made from herbaceous plants was more suitable for acidic soil amendments. In contrast, woody plant-derived biochar were recommended to remove heavy metals in environmental remediation and water treatment.
Collapse
Affiliation(s)
- Panfeng Tu
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Guanlin Zhang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guoqiang Wei
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Juan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Yongquan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
4
|
Fei YH, Zhang Z, Ye Z, Wu Q, Tang YT, Xiao T. Roles of soluble minerals in Cd sorption onto rice straw biochar. J Environ Sci (China) 2022; 113:64-71. [PMID: 34963550 DOI: 10.1016/j.jes.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 06/14/2023]
Abstract
Transforming to biochar provides an environmentally friendly approach for crop residue reutilization, which are usually applied as sorbent for heavy metal removal. As typical silicon-rich material, the specific sorptive mechanisms of rice straw derived biochar (RSBC) are concerned, especially at the low concentration range which is more environmentally relevant. In the present study, Cd sorption onto RSBCs at the concentration of ≤ 5 mg/L was investigated. The sorptive capacity was positively correlated with the pyrolytic temperature of the biochar and the environmental pH value. Water soluble minerals of the RSBCs played the dominant roles in Cd sorption, contributing 29.2%, 62.5% and 82.9% of the total sorption for RSBCs derived under 300°C, 500°C and 700°C, respectively. Increased number of cations, dominantly K+, were exchanged during the sorption. Coprecipitation with cations and carbonates may also be contributive to the sorption. The dissolution of silicon-containing minerals was found to be declined during sorption, suggesting its involvement in the sorption process, possibly through precipitation. Whilst, the sparingly soluble silicate crystals may impose ignorable role in the sorption. Complexation with organic groups is only a minor mechanism in Cd sorption, compared to the much more dominant roles of the inorganic ashes.
Collapse
Affiliation(s)
- Ying-Heng Fei
- School of Environment Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zuannan Zhang
- School of Environment Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhuofeng Ye
- School of Environment Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qihang Wu
- School of Environment Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ye-Tao Tang
- School of Environment Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environment Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Borgohain A, Sarmah M, Konwar K, Gogoi R, Bikash Gogoi B, Khare P, Kumar Paul R, Handique JG, Malakar H, Deka D, Saikia J, Karak T. Tea pruning litter biochar amendment in soil reduces arsenic, cadmium, and chromium in made tea (Camellia sinensis L.) and tea infusion: A safe drink for tea consumers. Food Chem X 2022; 13:100255. [PMID: 35498976 PMCID: PMC9040026 DOI: 10.1016/j.fochx.2022.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 10/25/2022] Open
|
6
|
Zhu H, Zou H. Ultra-efficient catalytic degradation of malachite green dye wastewater by KMnO 4-modified biochar (Mn/SRBC). RSC Adv 2022; 12:27002-27011. [PMID: 36320839 PMCID: PMC9494031 DOI: 10.1039/d2ra04263k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, KMnO4-modified biochar was prepared from spirulina residue as the research object. Herein, we report the synthesis, characterization, and catalytic degradation performance of KMnO4-modified biochar, given that heterogeneous catalytic oxidation is an effective way to treat dye wastewater rapidly. The Mn/SRBC catalyst prepared by KMnO4 modification was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, nitrogen adsorption–desorption and laser Raman spectroscopy. In addition, we compared the results with that of the unmodified SRBC. The results showed that the Mn/SRBC catalyst prepared by KMnO4 modification had a rich pore structure, which provided sufficient contact area for the catalytic reaction. In the presence of H2O2, the catalyst could be used to catalyze the oxidative degradation of malachite green in aqueous solution with ultra-high efficiency. In the experiment, the initial pH values of the reaction system had a significant influence on the reaction rate. The removal effect of biochar on the malachite green was poor in an alkaline environment. Within a specific range, the removal rate of malachite green was proportional to the concentration of H2O2 in the reaction system. The degradation rate of malachite green dye at 8000 mg L−1 was about 99% in the presence of the catalyst over 5 mmol L−1 hydrogen peroxide for 30 min. These results show the potential application of algae residue biochar and carbon-based composite catalysts for degrading and removing dye wastewater. In this work, KMnO4-modified biochar was prepared from spirulina residue as the research object.![]()
Collapse
Affiliation(s)
- Hao Zhu
- Department of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, People's Republic of China
| | - Haiming Zou
- Department of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, People's Republic of China
| |
Collapse
|
7
|
Zhu H, Zou H. Characterization of algae residue biochar and its application in methyl orange wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3716-3725. [PMID: 34928838 DOI: 10.2166/wst.2021.473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, Spirulina residue was used as the raw material to prepare different biochars by changing the pyrolysis time. Moreover, the obtained products were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction energy spectra. This experiment used the batch adsorption method to study the adsorption effect of pH, dosage, and pyrolysis time on methyl orange. The adsorption of methyl orange onto Spirulina residue biochar (SRBC) were fitted with the Langmuir isotherm model and pseudo-second-order kinetics. The results showed that the surface functional groups of SRBC obtained by dry pyrolysis were abundant, and could effectively adsorb methyl orange dye in an aqueous solution. The sample prepared at 500 °C for 5 h had the best adsorption effect on methyl orange. The change of pyrolysis time will affect the physicochemical properties of biochar from Spirulina residue, thereby affecting its adsorption effect on methyl orange dye. The analysis showed that the chemical adsorption of SRBC on methyl orange might be the primary way of dye removal. The results can provide a reference for preparing biochar from algae residue and biochar application in the removal of dye wastewater.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China E-mail:
| | - Haiming Zou
- Department of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China E-mail:
| |
Collapse
|