Gadore V, Ahmaruzzaman M. Fly ash-based nanocomposites: a potential material for effective photocatalytic degradation/elimination of emerging organic pollutants from aqueous stream.
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021;
28:46910-46933. [PMID:
34263399 DOI:
10.1007/s11356-021-15251-0]
[Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Fly ash is readily available and cheaply generated as 47a by-product of the combustion of organic matter. A tremendous amount of fly ash is generated worldwide, and its disposal has imposed 47a severe environmental concern. Its good adsorption capacities attracted several researchers to study the use of fly ash as 47a support for photocatalysts for the degradation of contaminants from wastewater. Undoubtedly the photocatalysts supported on fly ash have represented excellent degradation efficiencies due to the synergistic effect of adsorption and photocatalytic capacity. The utilization of fly ash as 47a precursor has solved the problem of disposal and added value to the waste by-product. Various preparation techniques for fly ash-based nanocomposites such as the sol-gel method, hydrothermal method, solvothermal method, precipitation and co-precipitation, modified metalorganic decomposition, electrospinning, incipient impregnation, and wet chemical synthesis, along with 47a brief study of their characterization using scanning electron microscopy, X-ray diffraction technique and Fourier transform infrared (FTIR) spectroscopy, and the mechanism of photodegradation of dyes have been discussed in this paper. The literature shows that SiO2, TiO2, and Al2O3 present in fly ash play an essential role in the photodegradation of dyes. Factors affecting the degradation of dyes, their kinetic studies, and methods to enhance photodegradation efficiency have also been discussed.
Collapse