1
|
Indelicato E, Zech M, Eberl A, Boesch S. Insights on the Shared Genetic Landscape of Neurodevelopmental and Movement Disorders. Curr Neurol Neurosci Rep 2025; 25:24. [PMID: 40095113 PMCID: PMC11914236 DOI: 10.1007/s11910-025-01414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE OF REVIEW Large-scale studies using hypothesis-free exome sequencing have revealed the strong heritability of neurodevelopmental disorders (NDDs) and their molecular overlap with later-onset, progressive, movement disorders phenotypes. In this review, we focus on the shared genetic landscape of NDDs and movement disorders. RECENT FINDINGS Cumulative research has shown that up to 30% of cases labelled as "cerebral palsy" have a monogenic etiology. Causal pathogenic variants are particularly enriched in genes previously associated with adult-onset progressive movement disorders, such as spastic paraplegias, dystonias, and cerebellar ataxias. Biological pathways that have emerged as common culprits are transcriptional regulation, neuritogenesis, and synaptic function. Defects in the same genes can cause neurological dysfunction both during early development and later in life. We highlight the implications of the increasing number of NDD gene etiologies for genetic testing in movement disorders. Finally, we discuss gaps and opportunities in the translation of this knowledge to the bedside.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria.
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Anna Eberl
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| |
Collapse
|
2
|
Iwata S, Hyugaji M, Soga Y, Morikawa M, Sasaki T, Takei Y. Gene expression of psychiatric disorder-related kinesin superfamily proteins (Kifs) is potentiated in alternatively activated primary cultured microglia. BMC Res Notes 2025; 18:44. [PMID: 39885501 PMCID: PMC11783738 DOI: 10.1186/s13104-024-07078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE Reactivity of microglia, the resident cells of the brain, underlies innate immune mechanisms (e.g., injury repair), and disruption of microglial reactivity has been shown to facilitate psychiatric disorder dysfunctions. Although cellular analyses based on cultured microglia have been conducted, the molecular mechanism regulating microglial polarization remains elusive. We established a primary microglia culture that enabled manipulation of the substate of cells. This allowed us to investigate the expression levels of psychiatric disorder-related Kifs messenger RNA (mRNA) in each condition. Kifs encode molecular motor proteins that transport cargo along microtubules, which are thought to dynamically reorganize during a substate change. RESULTS As a candidate for a crucial Kifs gene that is associated with microglia polarization, we selected psychiatric disorder-related Kifs including Kif17. We found that the relative amounts of Kif3a, Kif17, and Kif13a mRNA were potentiated in alternatively activated microglia, whereas there were no significant changes in activated microglia. Furthermore, the microglia derived from a mouse line which possesses a mutation inducing truncated KIF17 indicated disrupted morphological phenotype of alternatively activated microglia. These results suggest that the potentiation of specific molecular motor expression is required to maintain the function of alternatively activated microglia.
Collapse
Affiliation(s)
- Suguru Iwata
- Department of Anatomy and Neuroscience, Institute of Medicine, University of Tsukuba, 1-1- 1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Mitsuhiro Hyugaji
- Department of Anatomy and Neuroscience, Institute of Medicine, University of Tsukuba, 1-1- 1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- College of Biological Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305- 8572, Japan
| | - Yohei Soga
- Department of Anatomy and Neuroscience, Institute of Medicine, University of Tsukuba, 1-1- 1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Momo Morikawa
- Department of Anatomy and Neuroscience, Institute of Medicine, University of Tsukuba, 1-1- 1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Tetsuya Sasaki
- Department of Anatomy and Neuroscience, Institute of Medicine, University of Tsukuba, 1-1- 1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yosuke Takei
- Department of Anatomy and Neuroscience, Institute of Medicine, University of Tsukuba, 1-1- 1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
3
|
Rao L, Wirth JO, Matthias J, Gennerich A. A Two-Heads-Bound State Drives KIF1A Superprocessivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632505. [PMID: 39868206 PMCID: PMC11761605 DOI: 10.1101/2025.01.14.632505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
KIF1A, a neuron-specific Kinesin-3 motor, is indispensable for long-distance axonal transport and nuclear migration, processes vital for neuronal function. Using MINFLUX tracking, we reveal that KIF1A predominantly adopts a two-heads-bound state, even under ATP-limiting conditions, challenging prior models proposing a one-head-bound rate-limiting step. This two-heads-bound conformation, stabilized by interactions between the positively charged K-loop and negatively charged tubulin tails, enhances microtubule affinity and minimizes detachment. The shorter neck linker facilitates inter-head tension, keeping the heads out of phase and enabling highly coordinated stepping. In contrast, Kinesin-1 (KIF5B) transitions to a one-head-bound state under similar conditions, limiting its processivity. Perturbing KIF1A's mechanochemical cycle by prolonging its one-head-bound state significantly reduces processivity, underscoring the critical role of the two-heads-bound state in motility. These findings establish a mechanistic framework for understanding KIF1A's adaptations for neuronal transport and dysfunction in neurological diseases.
Collapse
|
4
|
Mitsutake A, Kawai M, Orimo K, Matsukawa T, Ishiura H, Mitsui J, Nakajima H, Murai H, Tsuji S, Goto J, Iwata NK. A Japanese Family with a Novel Pathogenic Variant in KIF1A Presenting with Spastic Paraparesis, Cerebellar Ataxia, and Intellectual Disability. CEREBELLUM (LONDON, ENGLAND) 2024; 24:20. [PMID: 39730866 DOI: 10.1007/s12311-024-01782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Variants in KIF1A are associated with hereditary spastic paraplegia (SPG30), which can manifest in both pure and complex forms. We describe a Japanese family with a novel KIF1A variant presenting with a complex form of SPG30. Patient 1, a 69-year-old woman, experienced progressive gait disturbance due to spastic paraparesis and cerebellar atrophy, and intellectual disability. Patient 2, the daughter of Patient 1, exhibited similar symptoms with more severe dysarthria. Patients 1 and 2 shared a heterozygous c.173 C > G (p.Ser58Trp) variant in the motor domain of KIF1A (NM_001244008.2), which is classified as likely pathogenic. This family highlights the role of autosomal dominant inheritance in a complex form of SPG30, expanding the understanding of its genetic basis and clinical presentation.
Collapse
Affiliation(s)
- Akihiko Mitsutake
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan.
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Mizuho Kawai
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan
| | - Kenta Orimo
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Jun Mitsui
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Nakajima
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan
- Department of Neurology, Ushiku Aiwa General Hospital, Ibaraki, Japan
| | - Hiroyuki Murai
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan
- Department of Neurology, International University of Health and Welfare Narita Hospital, Tokyo, Japan
| | - Shoji Tsuji
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Jun Goto
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan
- Department of Neurology, International University of Health and Welfare Ichikawa Hospital, Chiba, Japan
| | - Nobue K Iwata
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan
| |
Collapse
|
5
|
Benoit MPMH, Rao L, Asenjo AB, Gennerich A, Sosa H. Cryo-EM unveils kinesin KIF1A's processivity mechanism and the impact of its pathogenic variant P305L. Nat Commun 2024; 15:5530. [PMID: 38956021 PMCID: PMC11219953 DOI: 10.1038/s41467-024-48720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.7-3.5 Å resolution structures of dimeric microtubule-bound KIF1A, including the pathogenic P305L mutant, across various nucleotide states. Our structures reveal that KIF1A binds microtubules in one- and two-heads-bound configurations, with both heads exhibiting distinct conformations with tight inter-head connection. Notably, KIF1A's class-specific loop 12 (K-loop) forms electrostatic interactions with the C-terminal tails of both α- and β-tubulin. The P305L mutation does not disrupt these interactions but alters loop-12's conformation, impairing strong microtubule-binding. Structure-function analysis reveals the K-loop and head-head coordination as major determinants of KIF1A's superprocessive motility. Our findings advance the understanding of KIF1A's molecular mechanism and provide a basis for developing structure-guided therapeutics against KAND.
Collapse
Affiliation(s)
- Matthieu P M H Benoit
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ana B Asenjo
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Hernando Sosa
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
6
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
8
|
Benoit MPMH, Rao L, Asenjo AB, Gennerich A, Sosa HJ. Cryo-EM Unveils the Processivity Mechanism of Kinesin KIF1A and the Impact of its Pathogenic Variant P305L. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526913. [PMID: 36778368 PMCID: PMC9915623 DOI: 10.1101/2023.02.02.526913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.7-3.4 Å resolution structures of dimeric microtubule-bound KIF1A, including the pathogenic P305L mutant, across various nucleotide states. Our structures reveal that KIF1A binds microtubules in one- and two-heads-bound configurations, with both heads exhibiting distinct conformations with tight inter-head connection. Notably, KIF1A's class-specific loop 12 (K-loop) forms electrostatic interactions with the C-terminal tails of both α- and β-tubulin. The P305L mutation does not disrupt these interactions but alters loop-12's conformation, impairing strong microtubule-binding. Structure-function analysis reveals the K-loop and head-head coordination as major determinants of KIF1A's superprocessive motility. Our findings advance the understanding of KIF1A's molecular mechanism and provide a basis for developing structure-guided therapeutics against KAND.
Collapse
|
9
|
Nair A, Greeny A, Rajendran R, Abdelgawad MA, Ghoneim MM, Raghavan RP, Sudevan ST, Mathew B, Kim H. KIF1A-Associated Neurological Disorder: An Overview of a Rare Mutational Disease. Pharmaceuticals (Basel) 2023; 16:147. [PMID: 37259299 PMCID: PMC9962247 DOI: 10.3390/ph16020147] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 10/03/2023] Open
Abstract
KIF1A-associated neurological diseases (KANDs) are a group of inherited conditions caused by changes in the microtubule (MT) motor protein KIF1A as a result of KIF1A gene mutations. Anterograde transport of membrane organelles is facilitated by the kinesin family protein encoded by the MT-based motor gene KIF1A. Variations in the KIF1A gene, which primarily affect the motor domain, disrupt its ability to transport synaptic vesicles containing synaptophysin and synaptotagmin leading to various neurological pathologies such as hereditary sensory neuropathy, autosomal dominant and recessive forms of spastic paraplegia, and different neurological conditions. These mutations are frequently misdiagnosed because they result from spontaneous, non-inherited genomic alterations. Whole-exome sequencing (WES), a cutting-edge method, assists neurologists in diagnosing the illness and in planning and choosing the best course of action. These conditions are simple to be identified in pediatric and have a life expectancy of 5-7 years. There is presently no permanent treatment for these illnesses, and researchers have not yet discovered a medicine to treat them. Scientists have more hope in gene therapy since it can be used to cure diseases brought on by mutations. In this review article, we discussed some of the experimental gene therapy methods, including gene replacement, gene knockdown, symptomatic gene therapy, and cell suicide gene therapy. It also covered its clinical symptoms, pathogenesis, current diagnostics, therapy, and research advances currently occurring in the field of KAND-related disorders. This review also explained the impact that gene therapy can be designed in this direction and afford the remarkable benefits to the patients and society.
Collapse
Affiliation(s)
- Ayushi Nair
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Alosh Greeny
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Roshni Pushpa Raghavan
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
10
|
Badal KK, Puthanveettil SV. Axonal transport deficits in neuropsychiatric disorders. Mol Cell Neurosci 2022; 123:103786. [PMID: 36252719 DOI: 10.1016/j.mcn.2022.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Axonal transport is a major cellular process that mediates bidirectional signaling between the soma and synapse, enabling both intracellular and intercellular communications. Cellular materials, such as proteins, RNAs, and organelles, are transported by molecular motor proteins along cytoskeletal highways in a highly regulated manner. Several studies have demonstrated that axonal transport is central to normal neuronal function, plasticity, and memory storage. Importantly, disruptions in axonal transport result in neuronal dysfunction and are associated with several neurodegenerative disorders. However, we do not know much about axonal transport deficits in neuropsychiatric disorders. Here, we briefly discuss our current understanding of the role of axonal transport in schizophrenia, bipolar and autism.
Collapse
Affiliation(s)
- Kerriann K Badal
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Integrative Biology PhD Program, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | | |
Collapse
|
11
|
Rao L, Gennerich A. Single-Molecule Studies on the Motion and Force Generation of the Kinesin-3 Motor KIF1A. Methods Mol Biol 2022; 2478:585-608. [PMID: 36063335 PMCID: PMC9609470 DOI: 10.1007/978-1-0716-2229-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
KIF1A is a neuron-specific member of the kinesin-3 family of microtubule (MT) plus-end-directed motor proteins. It powers the migration of nuclei in differentiating brain stem cells and the transport of synaptic precursors and dense core vesicles in axons. Its dysfunction causes severe neurodevelopmental and neurodegenerative diseases termed KIF1A-associated neurological disorders (KAND). KAND mutations span the entirety of the KIF1A protein sequence, of which the majority are located within the motor domain and are thus predicted to affect the motor's motility and force-generating properties. Unfortunately, the molecular etiologies of KAND remain poorly understood, in part because KIF1A's molecular mechanism remains unclear. Here, we describe detailed methods for how to express a tail-truncated dimeric KIF1A in E. coli cells and provide step-by-step protocols for performing single-molecule studies with total internal reflection fluorescence microscopy and optical tweezers assays, which, when combined with structure-function studies, help to decipher KIF1A's molecular mechanism.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
12
|
Vecchia SD, Tessa A, Dosi C, Baldacci J, Pasquariello R, Antenora A, Astrea G, Bassi MT, Battini R, Casali C, Cioffi E, Conti G, De Michele G, Ferrari AR, Filla A, Fiorillo C, Fusco C, Gallone S, Germiniasi C, Guerrini R, Haggiag S, Lopergolo D, Martinuzzi A, Melani F, Mignarri A, Panzeri E, Pini A, Pinto AM, Pochiero F, Primiano G, Procopio E, Renieri A, Romaniello R, Sancricca C, Servidei S, Spagnoli C, Ticci C, Rubegni A, Santorelli FM. Monoallelic KIF1A-related disorders: a multicenter cross sectional study and systematic literature review. J Neurol 2022; 269:437-450. [PMID: 34487232 DOI: 10.1007/s00415-021-10792-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Monoallelic variants in the KIF1A gene are associated with a large set of clinical phenotypes including neurodevelopmental and neurodegenerative disorders, underpinned by a broad spectrum of central and peripheral nervous system involvement. METHODS In a multicenter study conducted in patients presenting spastic gait or complex neurodevelopmental disorders, we analyzed the clinical, genetic and neuroradiological features of 28 index cases harboring heterozygous variants in KIF1A. We conducted a literature systematic review with the aim to comparing our findings with previously reported KIF1A-related phenotypes. RESULTS Among 28 patients, we identified nine novel monoallelic variants, and one a copy number variation encompassing KIF1A. Mutations arose de novo in most patients and were prevalently located in the motor domain. Most patients presented features of a continuum ataxia-spasticity spectrum with only five cases showing a prevalently pure spastic phenotype and six presenting congenital ataxias. Seventeen mutations occurred in the motor domain of the Kinesin-1A protein, but location of mutation did not correlate with neurological and imaging presentations. When tested in 15 patients, muscle biopsy showed oxidative metabolism alterations (6 cases), impaired respiratory chain complexes II + III activity (3/6) and low CoQ10 levels (6/9). Ubiquinol supplementation (1gr/die) was used in 6 patients with subjective benefit. CONCLUSIONS This study broadened our clinical, genetic, and neuroimaging knowledge of KIF1A-related disorders. Although highly heterogeneous, it seems that manifestations of ataxia-spasticity spectrum disorders seem to occur in most patients. Some patients also present secondary impairment of oxidative metabolism; in this subset, ubiquinol supplementation therapy might be appropriate.
Collapse
Affiliation(s)
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.
| | - Claudia Dosi
- Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Jacopo Baldacci
- Kode Solutions, Lungarno Galileo Galilei 1, 56125, Pisa, Italy
| | - Rosa Pasquariello
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | - Antonella Antenora
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131, Naples, Italy
| | - Guja Astrea
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Roberta Battini
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.,Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, 56125, Pisa, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100, Latina, Italy
| | - Ettore Cioffi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100, Latina, Italy
| | - Greta Conti
- Neurology Unit and Neurogenetics Laboratories, Meyer Children University Hospital, University of Florence, 50139, Florence, Italy
| | - Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131, Naples, Italy
| | - Anna Rita Ferrari
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131, Naples, Italy
| | - Chiara Fiorillo
- Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, DINOGMI, University of Genoa, Genoa, Italy
| | - Carlo Fusco
- Child Neurology Unit, Pediatric Neurophysiology Laboratory, Department of Pediatrics, Azienda USL-IRCCS Di Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Salvatore Gallone
- Clinical Neurogenetics, Department Neurosciences, Az. Osp. Città della Salute e della Scienza di Torino, 1026, Torino, Italy
| | - Chiara Germiniasi
- Neuromuscular Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Renzo Guerrini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children University Hospital, University of Florence, 50139, Florence, Italy
| | - Shalom Haggiag
- Department of Neurology, Azienda Ospedaliera San Camillo Forlanini, 00152, Rome, Italy
| | - Diego Lopergolo
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.,Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Andrea Martinuzzi
- Scientific Institute IRCCS E. Medea, Unità Operativa Conegliano, 31015, Treviso, Italy
| | - Federico Melani
- Neurology Unit and Neurogenetics Laboratories, Meyer Children University Hospital, University of Florence, 50139, Florence, Italy
| | - Andrea Mignarri
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Elena Panzeri
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Antonella Pini
- Neuromuscular Pediatric Unit, IRRCS Istituto delle Scienze Neurologiche di Bologna, 40139, Bologna, Italy
| | - Anna Maria Pinto
- Medical Genetics Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Francesca Pochiero
- Department of Metabolic and Muscular, Meyer Children's University Hospital, 50139, Florence, Italy
| | - Guido Primiano
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Elena Procopio
- Department of Metabolic and Muscular, Meyer Children's University Hospital, 50139, Florence, Italy
| | - Alessandra Renieri
- Medical Genetics Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Cristina Sancricca
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Serenella Servidei
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy.,Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Carlotta Spagnoli
- Child Neurology Unit, Pediatric Neurophysiology Laboratory, Department of Pediatrics, Azienda USL-IRCCS Di Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Chiara Ticci
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.,Department of Metabolic and Muscular, Meyer Children's University Hospital, 50139, Florence, Italy
| | - Anna Rubegni
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | | |
Collapse
|
13
|
Boyle L, Rao L, Kaur S, Fan X, Mebane C, Hamm L, Thornton A, Ahrendsen JT, Anderson MP, Christodoulou J, Gennerich A, Shen Y, Chung WK. Genotype and defects in microtubule-based motility correlate with clinical severity in KIF1A-associated neurological disorder. HGG ADVANCES 2021; 2:100026. [PMID: 33880452 PMCID: PMC8054982 DOI: 10.1016/j.xhgg.2021.100026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
KIF1A-associated neurological disorder (KAND) encompasses a group of rare neurodegenerative conditions caused by variants in KIF1A,a gene that encodes an anterograde neuronal microtubule (MT) motor protein. Here we characterize the natural history of KAND in 117 individuals using a combination of caregiver or self-reported medical history, a standardized measure of adaptive behavior, clinical records, and neuropathology. We developed a heuristic severity score using a weighted sum of common symptoms to assess disease severity. Focusing on 100 individuals, we compared the average clinical severity score for each variant with in silico predictions of deleteriousness and location in the protein. We found increased severity is strongly associated with variants occurring in protein regions involved with ATP and MT binding: the P loop, switch I, and switch II. For a subset of variants, we generated recombinant proteins, which we used to assess transport in vivo by assessing neurite tip accumulation and to assess MT binding, motor velocity, and processivity using total internal reflection fluorescence microscopy. We find all modeled variants result in defects in protein transport, and we describe three classes of protein dysfunction: reduced MT binding, reduced velocity and processivity, and increased non-motile rigor MT binding. The rigor phenotype is consistently associated with the most severe clinical phenotype, while reduced MT binding is associated with milder clinical phenotypes. Our findings suggest the clinical phenotypic heterogeneity in KAND likely reflects and parallels diverse molecular phenotypes. We propose a different way to describe KAND subtypes to better capture the breadth of disease severity.
Collapse
Affiliation(s)
- Lia Boyle
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Simranpreet Kaur
- Murdoch Children’s Research Institute, Parkville, Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Xiao Fan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Caroline Mebane
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Laura Hamm
- Genetic & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Thornton
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared T. Ahrendsen
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Matthew P. Anderson
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Boston Children’s Hospital Intellectual and Developmental Disabilities Research Center, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - John Christodoulou
- Murdoch Children’s Research Institute, Parkville, Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
Imbalanced post- and extrasynaptic SHANK2A functions during development affect social behavior in SHANK2-mediated neuropsychiatric disorders. Mol Psychiatry 2021; 26:6482-6504. [PMID: 34021263 PMCID: PMC8760046 DOI: 10.1038/s41380-021-01140-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 02/04/2023]
Abstract
Mutations in SHANK genes play an undisputed role in neuropsychiatric disorders. Until now, research has focused on the postsynaptic function of SHANKs, and prominent postsynaptic alterations in glutamatergic signal transmission have been reported in Shank KO mouse models. Recent studies have also suggested a possible presynaptic function of SHANK proteins, but these remain poorly defined. In this study, we examined how SHANK2 can mediate electrophysiological, molecular, and behavioral effects by conditionally overexpressing either wild-type SHANK2A or the extrasynaptic SHANK2A(R462X) variant. SHANK2A overexpression affected pre- and postsynaptic targets and revealed a reversible, development-dependent autism spectrum disorder-like behavior. SHANK2A also mediated redistribution of Ca2+-permeable AMPA receptors between apical and basal hippocampal CA1 dendrites, leading to impaired synaptic plasticity in the basal dendrites. Moreover, SHANK2A overexpression reduced social interaction and increased the excitatory noise in the olfactory cortex during odor processing. In contrast, overexpression of the extrasynaptic SHANK2A(R462X) variant did not impair hippocampal synaptic plasticity, but still altered the expression of presynaptic/axonal signaling proteins. We also observed an attention-deficit/hyperactivity-like behavior and improved social interaction along with enhanced signal-to-noise ratio in cortical odor processing. Our results suggest that the disruption of pre- and postsynaptic SHANK2 functions caused by SHANK2 mutations has a strong impact on social behavior. These findings indicate that pre- and postsynaptic SHANK2 actions cooperate for normal neuronal function, and that an imbalance between these functions may lead to different neuropsychiatric disorders.
Collapse
|
15
|
Montenegro-Garreaud X, Hansen AW, Khayat MM, Chander V, Grochowski CM, Jiang Y, Li H, Mitani T, Kessler E, Jayaseelan J, Shen H, Gezdirici A, Pehlivan D, Meng Q, Rosenfeld JA, Jhangiani SN, Madan-Khetarpal S, Scott DA, Abarca-Barriga H, Trubnykova M, Gingras MC, Muzny DM, Posey JE, Liu P, Lupski JR, Gibbs RA. Phenotypic expansion in KIF1A-related dominant disorders: A description of novel variants and review of published cases. Hum Mutat 2020; 41:2094-2104. [PMID: 32935419 DOI: 10.1002/humu.24118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 01/27/2023]
Abstract
KIF1A is a molecular motor for membrane-bound cargo important to the development and survival of sensory neurons. KIF1A dysfunction has been associated with several Mendelian disorders with a spectrum of overlapping phenotypes, ranging from spastic paraplegia to intellectual disability. We present a novel pathogenic in-frame deletion in the KIF1A molecular motor domain inherited by two affected siblings from an unaffected mother with apparent germline mosaicism. We identified eight additional cases with heterozygous, pathogenic KIF1A variants ascertained from a local data lake. Our data provide evidence for the expansion of KIF1A-associated phenotypes to include hip subluxation and dystonia as well as phenotypes observed in only a single case: gelastic cataplexy, coxa valga, and double collecting system. We review the literature and suggest that KIF1A dysfunction is better understood as a single neuromuscular disorder with variable involvement of other organ systems than a set of discrete disorders converging at a single locus.
Collapse
Affiliation(s)
- Ximena Montenegro-Garreaud
- Servicio de Genética y Errores Innatos del Metabolismo, Instituto Nacional de Salud del Niño, Lima, Perú.,División de Investigación, Instituto de Medicina Genética, Lima, Perú.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Adam W Hansen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Michael M Khayat
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Varuna Chander
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Yunyun Jiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - He Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Elena Kessler
- Division of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joy Jayaseelan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Hua Shen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Suneeta Madan-Khetarpal
- Division of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Hugo Abarca-Barriga
- Servicio de Genética y Errores Innatos del Metabolismo, Instituto Nacional de Salud del Niño, Lima, Perú.,Facultad de Ciencias de la Salud, Medicina Humana, Universidad Científica del Sur, Lima, Perú
| | - Milana Trubnykova
- Servicio de Genética y Errores Innatos del Metabolismo, Instituto Nacional de Salud del Niño, Lima, Perú.,Area Preclínica, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Perú
| | - Marie-Claude Gingras
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Rudenskaya GE, Kadnikova VA, Ryzhkova OP, Bessonova LA, Dadali EL, Guseva DS, Markova TV, Khmelkova DN, Polyakov AV. KIF1A-related autosomal dominant spastic paraplegias (SPG30) in Russian families. BMC Neurol 2020; 20:290. [PMID: 32746806 PMCID: PMC7398351 DOI: 10.1186/s12883-020-01872-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Spastic paraplegia type 30 (SPG30) caused by KIF1A mutations was first reported in 2011 and was initially considered a very rare autosomal recessive (AR) form. In the last years, thanks to the development of massive parallel sequencing, SPG30 proved to be a rather common autosomal dominant (AD) form of familial or sporadic spastic paraplegia (SPG),, with a wide range of phenotypes: pure and complicated. The aim of our study is to detect AD SPG30 cases and to examine their molecular and clinical characteristics for the first time in the Russian population. Methods Clinical, genealogical and molecular methods were used. Molecular methods included massive parallel sequencing (MPS) of custom panel ‘spastic paraplegias’ with 62 target genes complemented by familial Sanger sequencing. One case was detected by the whole -exome sequencing. Results AD SPG30 was detected in 10 unrelated families, making it the 3rd (8.4%) most common SPG form in the cohort of 118 families. No AR SPG30 cases were detected. In total, 9 heterozygous KIF1A mutations were detected, with 4 novel and 5 known mutations. All the mutations were located within KIF1A motor domain. Six cases had pure phenotypes, of which 5 were familial, where 2 familial cases demonstrated incomplete penetrance, early onset and slow relatively benign SPG course. All 4 complicated cases were caused by novel mutations without familial history. The phenotypes varied from severe in two patients (e.g. lack of walking, pronounced mental retardation) to relatively mild non-disabling symptoms in two others. Conclusion AD SPG30 is one of the most common forms of SPG in Russia, the disorder has pronounced clinical variability while pure familial cases represent a significant part.
Collapse
Affiliation(s)
- G E Rudenskaya
- Federal State Budgetary Scientific Institution "Research Centre for Medical Genetics" (RCMG), Moscow, Russia
| | - V A Kadnikova
- Federal State Budgetary Scientific Institution "Research Centre for Medical Genetics" (RCMG), Moscow, Russia.
| | - O P Ryzhkova
- Federal State Budgetary Scientific Institution "Research Centre for Medical Genetics" (RCMG), Moscow, Russia
| | - L A Bessonova
- Federal State Budgetary Scientific Institution "Research Centre for Medical Genetics" (RCMG), Moscow, Russia
| | - E L Dadali
- Federal State Budgetary Scientific Institution "Research Centre for Medical Genetics" (RCMG), Moscow, Russia
| | - D S Guseva
- Federal State Budgetary Scientific Institution "Research Centre for Medical Genetics" (RCMG), Moscow, Russia
| | - T V Markova
- Federal State Budgetary Scientific Institution "Research Centre for Medical Genetics" (RCMG), Moscow, Russia
| | | | - A V Polyakov
- Federal State Budgetary Scientific Institution "Research Centre for Medical Genetics" (RCMG), Moscow, Russia
| |
Collapse
|
17
|
Nicita F, Ginevrino M, Travaglini L, D'Arrigo S, Zorzi G, Borgatti R, Terrone G, Catteruccia M, Vasco G, Brankovic V, Siliquini S, Romano S, Veredice C, Pedemonte M, Armando M, Lettori D, Stregapede F, Bosco L, Sferra A, Tessarollo V, Romaniello R, Ristori G, Bertini E, Valente EM, Zanni G. Heterozygous KIF1A variants underlie a wide spectrum of neurodevelopmental and neurodegenerative disorders. J Med Genet 2020; 58:475-483. [PMID: 32737135 DOI: 10.1136/jmedgenet-2020-107007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Dominant and recessive variants in the KIF1A gene on chromosome 2q37.3 are associated with several phenotypes, although only three syndromes are currently listed in the OMIM classification: hereditary sensory and autonomic neuropathy type 2 and spastic paraplegia type 30, both recessively inherited, and mental retardation type 9 with dominant inheritance. METHODS In this retrospective multicentre study, we describe the clinical, neuroradiological and genetic features of 19 Caucasian patients (aged 3-65 years) harbouring heterozygous KIF1A variants, and extensively review the available literature to improve current classification of KIF1A-related disorders. RESULTS Patients were divided into two groups. Group 1 comprised patients with a complex phenotype with prominent pyramidal signs, variably associated in all but one case with additional features (ie, epilepsy, ataxia, peripheral neuropathy, optic nerve atrophy); conversely, patients in group 2 presented an early onset or congenital ataxic phenotype. Fourteen different heterozygous missense variants were detected by next-generation sequencing screening, including three novel variants, most falling within the kinesin motor domain. CONCLUSION The present study further enlarges the clinical and mutational spectrum of KIF1A-related disorders by describing a large series of patients with dominantly inherited KIF1A pathogenic variants ranging from pure to complex forms of hereditary spastic paraparesis/paraplegias (HSP) and ataxic phenotypes in a lower proportion of cases. A comprehensive review of the literature indicates that KIF1A screening should be implemented in HSP regardless of its mode of inheritance or presentations as well as in other complex neurodegenerative or neurodevelopmental disorders showing congenital or early onset ataxia.
Collapse
Affiliation(s)
- Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Monia Ginevrino
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy.,Laboratory of Medical Genetics, IRCCS, Bambino Gesù Children's Hospital, Roma, Italy
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Stefano D'Arrigo
- Department of Developmental Neurology, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giovanna Zorzi
- Child Neuropsychiatry Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Gaetano Terrone
- Department of Translational Medicine, Section of Pediatrics, Child Neurology Unit, Universita degli Studi di Napoli Federico II, Napoli, Campania, Italy
| | - Michela Catteruccia
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Gessica Vasco
- Unit of Neurorehabilitation, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Vesna Brankovic
- Clinic for Child Neurology and Psychiatry, University of Belgrade, Belgrade, Serbia
| | - Sabrina Siliquini
- Child Neuropsychiatry Unit, Pediatric Hospital G. Salesi, Ospedali Riuniti, Ancona, Italy
| | - Silvia Romano
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Center for Experimental Neurological Therapies, S. Andrea Hospital Site, Sapienza University of Rome, Rome, Italy
| | - Chiara Veredice
- Child Neurology and Psychiatry, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rom, Italy
| | - Marina Pedemonte
- Unit of Pediatric Neurology and Muscle Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Michelina Armando
- Unit of Neurorehabilitation, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Donatella Lettori
- Unit of Neurorehabilitation, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Fabrizia Stregapede
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy.,Department of Sciences, Roma Tre University, Rom, Italy
| | - Luca Bosco
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Antonella Sferra
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Valeria Tessarollo
- Department of Developmental Neurology, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy
| | - Giovanni Ristori
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Center for Experimental Neurological Therapies, S. Andrea Hospital Site, Sapienza University of Rome, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| |
Collapse
|