1
|
Pi BK, Chung YH, Kim HS, Nam SH, Lee AJ, Nam DE, Park HJ, Kim SB, Chung KW, Choi BO. Compound Heterozygous Mutations of SACS in a Korean Cohort Study of Charcot-Marie-Tooth Disease Concurrent Cerebellar Ataxia and Spasticity. Int J Mol Sci 2024; 25:6378. [PMID: 38928084 PMCID: PMC11204044 DOI: 10.3390/ijms25126378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Mutations in the SACS gene are associated with autosomal recessive spastic ataxia of Charlevoix-Saguenay disease (ARSACS) or complex clinical phenotypes of Charcot-Marie-Tooth disease (CMT). This study aimed to identify SACS mutations in a Korean CMT cohort with cerebellar ataxia and spasticity by whole exome sequencing (WES). As a result, eight pathogenic SACS mutations in four families were identified as the underlying causes of these complex phenotypes. The prevalence of CMT families with SACS mutations was determined to be 0.3%. All the patients showed sensory, motor, and gait disturbances with increased deep tendon reflexes. Lower limb magnetic resonance imaging (MRI) was performed in four patients and all had fatty replacements. Of note, they all had similar fatty infiltrations between the proximal and distal lower limb muscles, different from the neuromuscular imaging feature in most CMT patients without SACS mutations who had distal dominant fatty involvement. Therefore, these findings were considered a characteristic feature in CMT patients with SACS mutations. Although further studies with more cases are needed, our results highlight lower extremity MRI findings in CMT patients with SACS mutations and broaden the clinical spectrum. We suggest screening for SACS in recessive CMT patients with complex phenotypes of ataxia and spasticity.
Collapse
Affiliation(s)
- Byung Kwon Pi
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (B.K.P.); (A.J.L.)
| | - Yeon Hak Chung
- Department of Neurology, Korea University Guro Hospital, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea;
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Soo Hyun Nam
- Cell and Gene Therapy Institute, Samsung Medical Center, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Ah Jin Lee
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (B.K.P.); (A.J.L.)
| | - Da Eun Nam
- Department of Domestic Business, Macrogen, Inc., 238 Teheran-ro, Gangnam-gu, Seoul 06221, Republic of Korea;
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, College of Medicine, Yonsei University, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Republic of Korea;
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea;
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (B.K.P.); (A.J.L.)
| | - Byung-Ok Choi
- Cell and Gene Therapy Institute, Samsung Medical Center, Gangnam-gu, Seoul 06351, Republic of Korea;
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwonr-ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
2
|
Sung SE, Lim JH, Kang KK, Choi JH, Lee S, Sung M, Park WT, Kim YI, Seo MS, Lee GW. Proteomic profiling of extracellular vesicles derived from human serum for the discovery of biomarkers in Avascular necrosis. Clin Proteomics 2024; 21:39. [PMID: 38825675 PMCID: PMC11145856 DOI: 10.1186/s12014-024-09489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Avascular necrosis (AVN) is a medical condition characterized by the destruction of bone tissue due to a diminished blood supply. When the rate of tissue destruction surpasses the rate of regeneration, effective treatment becomes challenging, leading to escalating pain, arthritis, and bone fragility as the disease advances. A timely diagnosis is imperative to prevent and initiate proactive treatment for osteonecrosis. We explored the potential of differentially expressed proteins in serum-derived extracellular vesicles (EVs) as biomarkers for AVN of the femoral head in humans. We analyzed the genetic material contained in serum-derived exosomes from patients for early diagnosis, treatment, and prognosis of avascular necrosis. METHODS EVs were isolated from the serum of both patients with AVN and a control group of healthy individuals. Proteomic analyses were conducted to compare the expression patterns of these proteins by proteomic analysis using LC-MS/MS. RESULTS Our results show that the levels of IGHV3-23, FN1, VWF, FGB, PRG4, FCGBP, and ZSWIM9 were upregulated in the EVs of patients with AVN compared with those of healthy controls. ELISA results showed that VWF and PRG4 were significantly upregulated in the patients with AVN. CONCLUSIONS These findings suggest that these EV proteins could serve as promising biomarkers for the early detection and diagnosis of AVN. Early diagnosis is paramount for effective treatment, and the identification of new osteonecrosis biomarkers is essential to facilitate swift diagnosis and proactive intervention. Our study provides novel insights into the identification of AVN-related biomarkers that can enhance clinical management and treatment outcomes.
Collapse
Affiliation(s)
- Soo-Eun Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, 41061, Republic of Korea
| | - Ju-Hyeon Lim
- Korea Biome Research Lab, Kolmar Korea Holdings, 61Heolleungro 8-gil, Seoul, 06800, Republic of Korea
| | - Kyung-Ku Kang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, 41061, Republic of Korea
| | - Joo-Hee Choi
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, 41061, Republic of Korea
| | - Sijoon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, 41061, Republic of Korea
| | - Minkyoung Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, 41061, Republic of Korea
| | - Wook-Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu, 42415, Republic of Korea
| | | | - Min-Soo Seo
- Department of Veterinary Tissue Engineering, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu, 42415, Republic of Korea.
- Cellexobio., Ltd, Daegu, 42415, Korea.
| |
Collapse
|
3
|
Tremblay M, Girard-Côté L, Brais B, Gagnon C. Documenting manifestations and impacts of autosomal recessive spastic ataxia of Charlevoix-Saguenay to develop patient-reported outcome. Orphanet J Rare Dis 2022; 17:369. [PMID: 36183078 PMCID: PMC9526980 DOI: 10.1186/s13023-022-02497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autosomal recessive cerebellar ataxias (ARCA) are a group of rare inherited disorders characterized by degeneration or abnormal development of the cerebellum. Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is one of the most prevalent in Europe. OBJECTIVES The aim of this study is to provide a better understanding of the manifestations and impacts of ARSACS. METHODS A systematic review of the literature was conducted, followed by a qualitative study using semistructured interviews and discussion groups to obtain the experience of people affected. RESULTS According to the PROMIS framework, the results show manifestations and impacts in three components of health: physical, mental, and social. Fatigue and struggles with balance and dexterity are the physical manifestations of the disease most often cited by participants. Negative affects such as frustration and depression are among the mental health impacts with some loss in cognitive abilities. Social health is the least documented component; nonetheless, people with the disease report significant impacts in terms of social relationships, activities and work. CONCLUSIONS These findings shed new light on the experience of people with recessive ataxia and identify key aspects to assess to improve their overall health.
Collapse
Affiliation(s)
- Marjolaine Tremblay
- Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada. .,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires, 2230 de l'Hôpital cp 1200, Jonquière, QC, G7X 7X2, Canada.
| | - Laura Girard-Côté
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires, 2230 de l'Hôpital cp 1200, Jonquière, QC, G7X 7X2, Canada.,Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, QC, G7H 2B1, Canada
| | - Bernard Brais
- McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada.,Montreal Neurological Institute and Hospital, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Cynthia Gagnon
- Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires, 2230 de l'Hôpital cp 1200, Jonquière, QC, G7X 7X2, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, 3001, 12e Avenue Nord, aile 9, porte 6, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
4
|
Bagaria J, Bagyinszky E, An SSA. Genetics of Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) and Role of Sacsin in Neurodegeneration. Int J Mol Sci 2022; 23:552. [PMID: 35008978 PMCID: PMC8745260 DOI: 10.3390/ijms23010552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease that was originally discovered in the population from the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region in Quebec. Although the disease progression of ARSACS may start in early childhood, cases with later onset have also been observed. Spasticity and ataxia could be common phenotypes, and retinal optic nerve hypermyelination is detected in the majority of patients. Other symptoms, such as pes cavus, ataxia and limb deformities, are also frequently observed in affected individuals. More than 200 mutations have been discovered in the SACS gene around the world. Besides French Canadians, SACS genetics have been extensively studied in Tunisia or Japan. Recently, emerging studies discovered SACS mutations in several other countries. SACS mutations could be associated with pathogenicity either in the homozygous or compound heterozygous stages. Sacsin has been confirmed to be involved in chaperon activities, controlling the microtubule balance or cell migration. Additionally, sacsin may also play a crucial role in regulating the mitochondrial functions. Through these mechanisms, it may share common mechanisms with other neurodegenerative diseases. Further studies are needed to define the exact functions of sacsin. This review introduces the genetic mutations discovered in the SACS gene and discusses its pathomechanisms and its possible involvement in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaya Bagaria
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea;
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|