1
|
Falini B. NPM1-mutated acute myeloid leukemia: New pathogenetic and therapeutic insights and open questions. Am J Hematol 2023; 98:1452-1464. [PMID: 37317978 DOI: 10.1002/ajh.26989] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional chaperone protein that is localized in the nucleolus but continuously shuttles between the nucleus and cytoplasm. NPM1 mutations occur in about one-third of AML, are AML-specific, usually involve exon 12 and are frequently associated with FLT3-ITD, DNMT3A, TET2, and IDH1/2 mutations. Because of its unique molecular and clinico-pathological features, NPM1-mutated AML is regarded as a distinct leukemia entity in both the International Consensus Classification (ICC) and the 5th edition of the World Health Organization (WHO) classification of myeloid neoplasms. All NPM1 mutations generate leukemic mutants that are aberrantly exported in the cytoplasm of the leukemic cells and are relevant to the pathogenesis of the disease. Here, we focus on recently identified functions of the NPM1 mutant at chromatin level and its relevance in driving HOX/MEIS gene expression. We also discuss yet controversial issues of the ICC/WHO classifications, including the biological and clinical significance of therapy-related NPM1-mutated AML and the relevance of blasts percentage in defining NPM1-mutated AML. Finally, we address the impact of new targeted therapies in NPM1-mutated AML with focus on CAR T cells directed against NPM1/HLA neoepitopes, as well as XPO1 and menin inhibitors.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
2
|
Gelardi M, Giancaspro R, Cassano M. Charcot-Leyden crystals: An ancient but never so current discovery. Am J Otolaryngol 2023; 44:103844. [PMID: 36948077 DOI: 10.1016/j.amjoto.2023.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
From the first description of Charcot-Leyden crystals (CLCs) to the present, many steps have been taken to understand the mechanisms underlying their formation. In particular, to date not only eosinophils but also mast cells are known to be responsible for the production of CLCs, which represent the crystallized form of Galectin-10. Due to their characteristics, CLCs typically induce a crystallopathy and are responsible for an exacerbation of inflammation. Nasal cytology (NC) has allowed to better understand the correlation between the severity of several rhinopaties and the presence of CLCs in NC samples, which is strictly correlated with an eosinophiles and mast cells infiltration. As a matter of fact, rhinopaties with a mixed eosinophilic-mast cell inflammatory infiltrate, characterized by the presence of abundant CLCs, show a worse prognosis and a higher risk of relapse. This could have important therapeutic implications, since the treatments available today could be exploited to target both eosinophils and mast cells, to reduce the damage induced by CLCs.
Collapse
Affiliation(s)
- M Gelardi
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - R Giancaspro
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - M Cassano
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
3
|
Tomizawa H, Yamada Y, Arima M, Miyabe Y, Fukuchi M, Hikichi H, Melo RCN, Yamada T, Ueki S. Galectin-10 as a Potential Biomarker for Eosinophilic Diseases. Biomolecules 2022; 12:biom12101385. [PMID: 36291593 PMCID: PMC9599181 DOI: 10.3390/biom12101385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Galectin-10 is a member of the lectin family and one of the most abundant cytoplasmic proteins in human eosinophils. Except for some myeloid leukemia cells, basophils, and minor T cell populations, galectin-10 is exclusively present in eosinophils in the human body. Galectin-10 forms Charcot–Leyden crystals, which are observed in various eosinophilic diseases. Accumulating studies have indicated that galectin-10 acts as a new biomarker for disease activity, diagnosis, and treatment effectiveness in asthma, eosinophilic esophagitis, rhinitis, sinusitis, atopic dermatitis, and eosinophilic granulomatosis with polyangiitis. The extracellular release of galectin-10 is not mediated through conventional secretory processes (piecemeal degranulation or exocytosis), but rather by extracellular trap cell death (ETosis), which is an active cell death program. Eosinophils undergoing ETosis rapidly disintegrate their plasma membranes to release the majority of galectin-10. Therefore, elevated galectin-10 levels in serum and tissue suggest a high degree of eosinophil ETosis. To date, several studies have shown that galectin-10/Charcot–Leyden crystals are more than just markers for eosinophilic inflammation, but play functional roles in immunity. In this review, we focus on the close relationship between eosinophils and galectin-10, highlighting this protein as a potential new biomarker in eosinophilic diseases.
Collapse
Affiliation(s)
- Hiroki Tomizawa
- Clinical Laboratory Medicine, Department of General Internal Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yoshiyuki Yamada
- Department of Pediatrics, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Misaki Arima
- Clinical Laboratory Medicine, Department of General Internal Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yui Miyabe
- Clinical Laboratory Medicine, Department of General Internal Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Mineyo Fukuchi
- Clinical Laboratory Medicine, Department of General Internal Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Haruka Hikichi
- Clinical Laboratory Medicine, Department of General Internal Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Rossana C. N. Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil
| | - Takechiyo Yamada
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Shigeharu Ueki
- Clinical Laboratory Medicine, Department of General Internal Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
- Correspondence: ; Tel./Fax: +81-18-884-6209
| |
Collapse
|