1
|
Akao M, Sakurai T, Horie M, Otani H, Takano M, Kouchi I, Murakami T, Sasayama S. Angiotensin II type 1 receptor blockade abolishes specific K(ATP)channel gene expression in rats with myocardial ischemia. J Mol Cell Cardiol 2000; 32:2239-47. [PMID: 11112999 DOI: 10.1006/jmcc.2000.1251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cardiac ATP-sensitive potassium (K(ATP)) channel is potentially composed of an inward rectifier potassium channel (Kir6.1 and/or Kir6.2) subunit and the cardiac type of sulfonylurea receptor (SUR2A). We reported that cardiac Kir6.1 mRNA and protein are specifically upregulated in the non-ischemic as well as the ischemic regions in rats with myocardial ischemia, suggesting that humoral and/or hemodynamic factors are responsible for this regulation. In the present study, pretreatment with TCV-116, an angiotensin (Ang) II type 1 receptor antagonist, completely inhibited the upregulation of Kir6.1 mRNA and protein expression in both regions of rat hearts subjected to 60 min of coronary artery occlusion followed by 24 h of reperfusion; whereas pretreatment with lisinopril, an Ang converting enzyme (ACE) inhibitor, partly inhibited this upregulation. Except for rats pretreated with TCV-116, Kir6.1 mRNA levels were positively correlated with those for brain natriuretic peptide (BNP), a molecular indicator of regional wall stress, in both the non-ischemic and the ischemic regions. Plasma Ang II levels were not elevated in rats with control myocardial ischemia compared with sham rats. Thus, the stress-related induction of cardiac Kir6.1 mRNA and protein expression under myocardial ischemia is inhibited by pretreatment with an AT1 antagonist, but also in part by an ACE inhibitor, suggesting that activation of local renin-angiotensin system may play a role.
Collapse
Affiliation(s)
- M Akao
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Xie LH, Takano M, Kakei M, Okamura M, Noma A. Wortmannin, an inhibitor of phosphatidylinositol kinases, blocks the MgATP-dependent recovery of Kir6.2/SUR2A channels. J Physiol 1999; 514 ( Pt 3):655-65. [PMID: 9882737 PMCID: PMC2269097 DOI: 10.1111/j.1469-7793.1999.655ad.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. In order to investigate the mechanism underlying MgATP-dependent recovery of ATP-sensitive potassium (KATP) channels, we expressed Kir6.2/SUR2A (inwardly rectifying K+ channel subunit/sulfonylurea receptor) or C-terminal-truncated Kir6.2 (Kir6.2DeltaC26) in COS7 cells (Green monkey kidney cells), and carried out inside-out patch clamp experiments. 2. After patch excision in ATP-free internal solution, the activity of Kir6.2/SUR2A channels could be maximally recovered by the application of 5 mM MgATP. Subsequent application of 100 microM Ca2+ induced a rapid decay of Kir6.2/SUR2A activity to 11.6 +/- 1.1 % (mean +/- s.e.m.) of the control level (Ca2+-induced run-down; n = 64). 3. MgATP (5 mM) recovered 99.4 +/- 4.2 % (n = 13) of the Ca2+-induced run-down. Protein kinase inhibitors such as W-7, H-7, H-8 and genistein did not inhibit this reaction. However, wortmannin, an inhibitor of phosphatidylinositol 3- and 4-kinases, blocked the MgATP-dependent recovery in a concentration-dependent manner; the magnitudes of recovery were 35.7 +/- 7.2 % (10 microM) and 4.3 +/- 2.5 % (100 microM) of the Ca2+-induced run-down. 4. MgUDP (10 mM) reversed the Ca2+-induced run-down of Kir6.2/SUR2A channels by 60.4 +/- 7.6 % (n = 5). Wortmannin failed to modify this reaction. 5. Kir6.2DeltaC26 channels, which opened in the absence of SUR2A, were less sensitive to Ca2+; Kir6.2DeltaC26 channels were inactivated to 44.8 +/- 4.4 % (n = 14) by 100 microM Ca2+. MgATP recovered the Ca2+-induced run-down of Kir6.2DeltaC26 by 89.8 +/- 7. 7 % (n = 9), and 100 microM wortmannin inhibited this reaction (1.8 +/- 2 %, n = 7). 6. Application of 10 microM phosphatidylinositol-4, 5-bisphosphate (PI-4,5-P2) recovered the activity of Kir6.2/SUR2A channels after Ca2+-induced run-down (104.3 +/- 6.4 %, n = 10). Even after the MgATP-dependent recovery was blocked by 100 microM wortmannin, PI-4,5-P2 reactivated the channels (102.3 +/- 8.6 %, n = 5). Similar results were obtained with Kir6.2DeltaC26. 7. These results suggest that the entity of MgATP-dependent recovery may be membrane lipid phosphorylation rather than protein phosphorylation, and that synthesis of PI-4,5-P2 or phosphatidylinositol-3,4, 5-trisphosphate may upregulate Kir6.2 channels.
Collapse
Affiliation(s)
- L H Xie
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
3
|
Abstract
Pharmacology of CFTR Chloride Channel Activity. Physiol. Rev. 79, Suppl.: S109-S144, 1999. - The pharmacology of cystic fibrosis transmembrane conductance regulator (CFTR) is at an early stage of development. Here we attempt to review the status of those compounds that modulate the Cl- channel activity of CFTR. Three classes of compounds, the sulfonylureas, the disulfonic stilbenes, and the arylaminobenzoates, have been shown to directly interact with CFTR to cause channel blockade. Kinetic analysis has revealed the sulfonylureas and arylaminobenzoates interact with the open state of CFTR to cause blockade. Suggestive evidence indicates the disulfonic stilbenes act by a similar mechanism but only from the intracellular side of CFTR. Site-directed mutagenesis studies indicate the involvement of specific amino acid residues in the proposed transmembrane segment 6 for disulfonic stilbene blockade and segments 6 and 12 for arylaminobenzoate blockade. Unfortunately, these compounds (sulfonylureas, disulfonic stilbenes, arylaminobenzoate) also act at a number of other cellular sites that can indirectly alter the activity of CFTR or the transepithelial secretion of Cl-. The nonspecificity of these compounds has complicated the interpretation of results from cellular-based experiments. Compounds that increase the activity of CFTR include the alkylxanthines, phosphodiesterase inhibitors, phosphatase inhibitors, isoflavones and flavones, benzimidazolones, and psoralens. Channel activation can arise from the stimulation of the cAMP signal transduction cascade, the inhibition of inactivating enzymes (phosphodiesterases, phosphatases), as well as the direct binding to CFTR. However, in contrast to the compounds that block CFTR, a detailed understanding of how the above compounds increase the activity of CFTR has not yet emerged.
Collapse
Affiliation(s)
- B D Schultz
- University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | |
Collapse
|
4
|
Takano M, Xie LH, Otani H, Horie M. Cytoplasmic terminus domains of Kir6.x confer different nucleotide-dependent gating on the ATP-sensitive K+ channel. J Physiol 1998; 512 ( Pt 2):395-406. [PMID: 9763630 PMCID: PMC2231215 DOI: 10.1111/j.1469-7793.1998.395be.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. In order to investigate the structural basis for the nucleotide-dependent gating of ATP-sensitive K+ channels (KATP), Kir6.1 (uKATP-1), Kir6.2 (BIR1) and chimeric channels were co-expressed with a common subtype of sulphonylurea receptor, SUR1, in COS7 cells. Representing the amino terminal domain-transmembrane domain-carboxyl-terminal domain of Kir6.1 as 1-1-1 and of Kir6.2 as 2-2-2, chimeric Kir6.x channels were constructed by swapping the amino and/or carboxyl terminal domains between Kir6.1 and Kir6.2 to give the chimeric x-1-x channels 1-1-2, 2-1-1 and 2-1-2, and the chimeric x-2-x channels 2-2-1, 1-2-2 and 1-2-1. 2. Inside-out patch clamp experiments revealed that both wild-type Kir6.1 and Kir6.2 formed inwardly rectifying K+ channels. Single-channel conductances were 36.3 and 66.1 pS, respectively. Chimeric x-1-x channels, whose transmembrane domain was that of Kir6.1, showed similar ion-pore properties to wild-type Kir6.1. Likewise, chimeric x-2-x channels had similar ion-pore properties to wild-type Kir6.2. 3. Wild-type Kir6.1 and Kir6.2 possessed distinct gating properties towards intracellular nucleotides. The activity of Kir6.1 was entirely dependent on Mg2+ and nucleotide diphosphates (NDPs) such as UDP. In contrast, Kir6.2 was activated upon excision of patch membrane. When Kir6.2 underwent rundown, UDP reactivated the channel. 4. In order to eliminate UDP dependence from Kir6.1, it was necessary to replace both N- and C-termini; chimera 2-1-2 opened in UDP-free conditions. With Kir6.2, substitution of the N-terminus with that of Kir6.1 conferred UDP dependence on chimeras 1-2-2 and 1-2-1. Chimera 2-2-1 opened in UDP-free conditions, but UDP potentiated the channel activity by > 20-fold. 5. The kinetics of UDP-dependent activation were significantly different between Kir6.1 and Kir6.2. Kir6.1 maximally activated by UDP was sensitive to intracellular ATP, although its ATP sensitivity was significantly lower than that of Kir6.2 measured in identical conditions. The kinetics of UDP-dependent activation and ATP sensitivity could be transferred between Kir6.1 and Kir6.2 only when both N- and C-termini were replaced. We therefore concluded that nucleotide-dependent gating was regulated by the N- and C-terminal domains irrespective of the transmembrane domains.
Collapse
Affiliation(s)
- M Takano
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, 606-8501 Kyoto, Japan.
| | | | | | | |
Collapse
|
5
|
Mikhailov MV, Proks P, Ashcroft FM, Ashcroft SJ. Expression of functionally active ATP-sensitive K-channels in insect cells using baculovirus. FEBS Lett 1998; 429:390-4. [PMID: 9662455 DOI: 10.1016/s0014-5793(98)00640-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have expressed active ATP-sensitive K-channels (K(ATP) channels) in Spodoptera frugiperda (Sf9) cells using a baculovirus vector. A high yield of active channels was obtained on co-infection with SUR1 and Kir6.2 engineered to contain N- and/or C-terminal tags to permit detection by Western blotting. Channel activity was sensitive to ATP, glibenclamide and diazoxide. Channel activity was also obtained on expression of a C-terminally truncated Kir6.2 (Kir6.2 deltaC26): these channels were blocked by ATP but were insensitive to sulphonylureas. In contrast to Xenopus oocytes and mammalian cells the full length Kir6.2 also gave rise to active channels in Sf9 cells when expressed alone. The highest yield of active K(ATP) channels was obtained on infection with a fusion protein containing SUR1 linked to Kir6.2 deltaC26 via a 6-amino acid linker.
Collapse
Affiliation(s)
- M V Mikhailov
- Nuffield Dept. of Clinical Biochemistry, John Radcliffe Hospital, Headington, Oxford, UK.
| | | | | | | |
Collapse
|
6
|
Tucker SJ, Gribble FM, Proks P, Trapp S, Ryder TJ, Haug T, Reimann F, Ashcroft FM. Molecular determinants of KATP channel inhibition by ATP. EMBO J 1998; 17:3290-6. [PMID: 9628866 PMCID: PMC1170667 DOI: 10.1093/emboj/17.12.3290] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ATP-sensitive K+ (KATP) channels are both inhibited and activated by intracellular nucleotides, such as ATP and ADP. The inhibitory effects of nucleotides are mediated via the pore-forming subunit, Kir6.2, whereas the potentiatory effects are conferred by the sulfonylurea receptor subunit, SUR. The stimulatory action of Mg-nucleotides complicates analysis of nucleotide inhibition of Kir6. 2/SUR1 channels. We therefore used a truncated isoform of Kir6.2, that expresses ATP-sensitive channels in the absence of SUR1, to explore the mechanism of nucleotide inhibition. We found that Kir6.2 is highly selective for ATP, and that both the adenine moiety and the beta-phosphate contribute to specificity. We also identified several mutations that significantly reduce ATP inhibition. These are located in two distinct regions of Kir6.2: the N-terminus preceding, and the C-terminus immediately following, the transmembrane domains. Some mutations in the C-terminus also markedly increased the channel open probability, which may account for the decrease in apparent ATP sensitivity. Other mutations did not affect the single-channel kinetics, and may reduce ATP inhibition by interfering with ATP binding and/or the link between ATP binding and pore closure. Our results also implicate the proximal C-terminus in KATP channel gating.
Collapse
Affiliation(s)
- S J Tucker
- University Laboratory of Physiology, Oxford OX1 3PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Xie LH, Takano M, Noma A. The inhibitory effect of propranolol on ATP-sensitive potassium channels in neonatal rat heart. Br J Pharmacol 1998; 123:599-604. [PMID: 9517376 PMCID: PMC1565199 DOI: 10.1038/sj.bjp.0701630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Whole cell and single channel recordings of ATP-sensitive K+ current (I(K,ATP)) were carried out in ventricular myocytes isolated from neonatal rat hearts. 2. (+/-)-Propranolol, a commonly used beta-blocker, inhibited the whole cell I(K,ATP) in a concentration-dependent manner with a half-maximal concentration (IC50) of 6.7 +/- 1.4 microM, whereas it blocked the inward rectifier K+ current (I(K,I)) only at much higher concentrations (IC50 = 102.4 +/- 20.2 microM). The inhibition was time- and voltage-independent. 3. In the outside-out patch configuration, (+/-)-propranolol inhibited I(K,ATP) (IC50 = 9.8 +/- 2.9 microM) by decreasing the open probability of the channel without inducing additional noise in the open-channel current or a decrease of single channel conductance. The single channel current of I(K,I) was also blocked by (+/-)-propranolol in the same way as I(K,ATP). 4. (+)-Propranolol, an optic isomer having no beta-blocking effect, inhibited I(K,ATP) (IC50 = 5.8 +/- 1.0 microM), whilst atenolol, a selective beta1-blocker had no effect. Neither GDPbetaS (1 mM) nor GTPgammaS (200 microM) included in the pipette solution modulated the inhibitory effect of (+/-)-propranolol. 5. We concluded that the inhibitory effect of (+/-)-propranolol was not via the beta-adrenergic signal transduction pathway, but by direct inhibition of I(K,ATP) channels.
Collapse
Affiliation(s)
- L H Xie
- Department of Physiology, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
8
|
Akao M, Otani H, Horie M, Takano M, Kuniyasu A, Nakayama H, Kouchi I, Murakami T, Sasayama S. Myocardial ischemia induces differential regulation of KATP channel gene expression in rat hearts. J Clin Invest 1997; 100:3053-9. [PMID: 9399952 PMCID: PMC508518 DOI: 10.1172/jci119860] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cardiac ATP-sensitive potassium (KATP) channel is thought to be a complex composed of an inward rectifier potassium channel (Kir6.1 and/or Kir6.2) subunit and the sulfonylurea receptor (SUR2). This channel is activated during myocardial ischemia and protects the heart from ischemic injury. We examined the transcriptional expression of these genes in rats with myocardial ischemia. 60 min of myocardial regional ischemia followed by 24-72 h, but not 3-6 h, of reperfusion specifically upregulated Kir6.1 mRNA not only in the ischemic (approximately 2.7-3.1-fold) but also in the nonischemic (approximately 2.0-2.6-fold) region of the left ventricle. 24 h of continuous ischemia without reperfusion also induced an increase in Kir6.1 mRNA in both regions, whereas 15-30 min of ischemia followed by 24 h of reperfusion did not induce such expression. In contrast, mRNAs for Kir6.2 and SUR2 remained unchanged under these ischemic procedures. Western blotting demonstrated similar increases in the Kir6.1 protein level both in the ischemic (2.4-fold) and the nonischemic (2.2-fold) region of rat hearts subjected to 60 min of ischemia followed by 24 h of reperfusion. Thus, prolonged myocardial ischemia rather than reperfusion induces delayed and differential regulation of cardiac KATP channel gene expression.
Collapse
Affiliation(s)
- M Akao
- Cardiovascular Division of Internal Medicine, Kyoto University Hospital, Kyoto 606, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|