1
|
Dolai S, Pal S, Deepa S, Garai K. Quantitative Assessment of Conformational Heterogeneity in Apolipoprotein E4 Using Hydrogen-Deuterium Exchange Mass Spectrometry. J Phys Chem B 2024; 128:10075-10085. [PMID: 39360975 DOI: 10.1021/acs.jpcb.4c04738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Apolipoprotein E4 (apoE4) is the strongest genetic risk factor for Alzheimer's disease (AD). However, structural differences between apoE4 and the AD-neutral isoform, apoE3, still remain unclear. Recent studies suggest that apoE4 harbors intermediates. However, the biophysical properties and isoform specificity of these intermediates are not known. Here, we use the kinetics of hydrogen-deuterium exchange by mass spectrometry (HDX-MS) to examine the conformational heterogeneities in apoE3 and apoE4. First, we use numerical simulations to compute the HDX-mass spectra of a protein following mixed EX1/EX2 kinetics. The results indicate that in the presence of EX1 kinetics, which is an indicator of conformational heterogeneity, time evolution of the standard deviation (σ(t)) of the spectra exhibits a clear peak, which is dependent on the number of residues (NEX1) and the rate constant of EX1 kinetics (kEX1). Then, we performed experiments with several variants of the apoE proteins and compared them with simulation to estimate NEX1 and kEX1. Kinetics of the mean deuteration is found to be faster for apoE4, consistent with its poorer stability than apoE3. Importantly, in the case of apoE4, σ(t) exhibits a clear peak at t ∼ 60 s, but apoE3 shows only a small peak at 1800 s. Therefore, both NEX1 and kEX1 are larger for apoE4, indicating greater conformational heterogeneity. Notably, the partial EX1 kinetics is observed in both the isolated N-terminal fragment and the full-length form of apoE4, although it is more pronounced in the full-length protein. Moreover, it is enhanced at higher pH and in the presence of bis-ANS. Mutations such as R61T and R112I diminish the EX1 kinetics, making apoE4 behave more like apoE3. Thus, the amino acid substitution at position 112 alters the structural dynamics of the N-terminal domain of apoE4; the changes are further propagated and amplified in the full-length protein. We conclude that HDX-MS is a label-free and robust methodology to characterize structural heterogeneities of proteins even under native conditions. This opens opportunities for screening of the "structure corrector" drug molecules that could convert apoE4 to apoE3-like.
Collapse
Affiliation(s)
- Subhrajyoti Dolai
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Sudip Pal
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - S Deepa
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Kanchan Garai
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| |
Collapse
|
2
|
Burdick JP, Basi RS, Burns KS, Weers PMM. The role of C-terminal ionic residues in self-association of apolipoprotein A-I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184098. [PMID: 36481181 PMCID: PMC11433772 DOI: 10.1016/j.bbamem.2022.184098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein and is comprised of a helical bundle domain and a C-terminal (CT) domain encompassing the last ~65 amino acid residues of the 243-residue protein. The CT domain contains three putative helices (helix 8, 9, and 10) and is critical for initiating lipid binding and harbors sites that mediate self-association of the lipid-free protein. Three lysine residues reside in helix-8 (K195, 206, 208), and three in helix-10 (K226, 238, 239). To determine the role of each CT lysine residue in apoA-I self-association, single, double and triple lysine to glutamine mutants were engineered via site-directed mutagenesis. Circular dichroism and chemical denaturation analysis revealed all mutants retained their structural integrity. Chemical crosslinking and size-exclusion chromatography showed a small effect on self-association when helix-8 lysine residues were changed into glutamine. In contrast, mutation of the three helix-10 lysine residues resulted in a predominantly monomeric protein and K226 was identified as a critical residue. When helix-10 glutamate residues 223, 234, or 235 were substituted with glutamine, reduced self-association was observed similar to that of the helix-10 lysine variants, suggesting ionic interactions between these residues. Thus, helix-10 is a critical part of apoA-I mediating self-association, and disruption of ionic interactions changes apoA-I from an oligomeric state into a monomer. Since the helix-10 triple mutant solubilized phospholipid vesicles at higher rates compared to wild-type apoA-I, this indicates monomeric apoA-I is more potent in lipid binding, presumably because helix-10 is fully accessible to interact with lipids.
Collapse
Affiliation(s)
- John P Burdick
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840, USA
| | - Rohin S Basi
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840, USA
| | - Kaitlyn S Burns
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840, USA
| | - Paul M M Weers
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840, USA.
| |
Collapse
|
3
|
Horn JVC, Kakutani LM, Narayanaswami V, Weers PMM. Insights into the C-terminal domain of apolipoprotein E from chimera studies with apolipophorin III. Mol Cell Biochem 2023; 478:173-183. [PMID: 35763125 PMCID: PMC11479662 DOI: 10.1007/s11010-022-04497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/01/2022] [Indexed: 01/17/2023]
Abstract
Apolipoprotein E3 (apoE) is a critical cholesterol transport protein in humans and is composed of two domains: a well characterized N-terminal (NT) domain that harbors the low-density lipoprotein LDL receptor, and a less understood C-terminal (CT) domain that is the site of protein oligomerization and initiation of lipid binding. To better understand the domain structure of apoE, the CT domain was fused to apolipophorin III (apoLp-III), a single-domain, monomeric apolipoprotein of insect origin, to yield a chimeric protein, apoLp-III/CT-apoE. Recombinant apoLp-III/CT-apoE maintained an overall helical content similar to that of the parent proteins, while chemical induced unfolding studies indicated that its structural integrity was not compromised. Analysis using 1-anilinonaphthalene-8-sulfonic acid (ANS), a sensitive fluorescent indicator of exposed hydrophobic sites and protein folding, demonstrated that whereas apoLp-III provided few ANS binding sites, apoLp-III/CT-apoE harbored an abundance of ANS binding sites. Thus, this indicated tertiary structure formation in CT-apoE when part of the chimera. Size-exclusion chromatography and chemical crosslinking analysis demonstrated that while apoLp-III is monomeric, the chimeric protein formed large oligomeric complexes, similar to native apoE3. Compared to apoLp-III, the chimera showed a two-fold enhancement in phospholipid vesicle solubilization rates and a significantly improved ability to bind to lipolyzed low-density lipoprotein, preventing the onset of lipoprotein aggregation at concentrations comparable to that of parent CT-apoE. These results confirm that high lipid binding and self-association sites are located in the CT domain of apoE, and that these properties can be transferred to an unrelated apolipoprotein, demonstrating that these properties operate independently from the NT domain.
Collapse
Affiliation(s)
- James V C Horn
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840, USA
| | - Leesa M Kakutani
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840, USA
| | - Paul M M Weers
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840, USA.
| |
Collapse
|
4
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Kothari S, Bala N, Patel AB, Donovan A, Narayanaswami V. The LDL receptor binding domain of apolipoprotein E directs the relative orientation of its C-terminal segment in reconstituted nascent HDL. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183618. [PMID: 33831404 PMCID: PMC8211829 DOI: 10.1016/j.bbamem.2021.183618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Apolipoprotein E (apoE) (299 residues) is a highly helical protein that plays a critical role in cholesterol homeostasis. It comprises a four-helix bundle N-terminal (NT) and a C-terminal (CT) domain that can exist in lipid-free and lipid-associated states. In humans, there are two major apoE isoforms, apoE3 and apoE4, which differ in a single residue in the NT domain, with apoE4 strongly increasing risk of Alzheimer's disease (AD) and cardiovascular diseases (CVD). It has been proposed that the CT domain initiates rapid lipid binding, followed by a slower NT domain helix bundle opening and lipid binding to yield discoidal reconstituted high density lipoprotein (rHDL). However, the contribution of the NT domain on the CT domain organization in HDL remains poorly understood. To understand this, we employed Cys-specific cross-linking and spatially-sensitive fluorophores in the NT and CT domains of apoE3 and apoE4, and in isolated CT domain. We noted that the helices in isolated CT domain are oriented parallel to those in the neighboring molecule in rHDL, whereas full length apoE3 and apoE4 adopt either an anti-parallel or hairpin-like organization. It appears that the bulky NT domain determines the spatial organization of its CT domain in rHDL, a finding that has significance for apoE4, which is more susceptible to proteolytic cleavage in AD brains, showing increased accumulation of neurotoxic NT and CT fragments. We envisage that the structural organization of HDL apoE would have profound functional consequences in its ability to regulate cholesterol homeostasis in AD and CVD.
Collapse
Affiliation(s)
- S Kothari
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - N Bala
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - A B Patel
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - A Donovan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - V Narayanaswami
- Department of Chemistry and Biochemistry, 1250 Bellflower Blvd., California State University, Long Beach, Long Beach, CA 90840, USA.
| |
Collapse
|
6
|
Frieden C. Protein oligomerization as a metabolic control mechanism: Application to apoE. Protein Sci 2019; 28:837-842. [PMID: 30701627 DOI: 10.1002/pro.3583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 02/03/2023]
Abstract
It has been estimated that 30%-50% of proteins self-assemble to form complexes consisting of multiple copies of themselves. If there is a functional difference between different molecular weight forms and if these forms interconvert on a reasonable time scale then oligomerization could be an important metabolic control mechanism. The example given here is of apoE for which the oligomerization process is measured in minutes to hours and the monomer binds lipids while the tetramer does not. Examination of the literature reveals few reports on the rate constants that control the interconversion of different molecular weight forms. Perhaps it is time to collect such data.
Collapse
Affiliation(s)
- Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
7
|
Ordered opening of LDL receptor binding domain of human apolipoprotein E3 revealed by hydrogen/deuterium exchange mass spectrometry and fluorescence spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1165-1173. [PMID: 30282614 DOI: 10.1016/j.bbapap.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/31/2018] [Accepted: 08/18/2018] [Indexed: 01/18/2023]
Abstract
Apolipoprotein E3 (apoE3) is an exchangeable apolipoprotein that plays a critical role in cholesterol homeostasis. The N-terminal (NT) domain of apoE3 (residues 1-191) is folded into a helix bundle comprised of 4 amphipathic α-helices: H1, H2, H3 and H4, flanked by flexible helices N1 and N2, and Hinge Helix 1 (Hinge H1), at the N-and C-terminal sides of the helix bundle, respectively. The NT domain plays a critical role in binding to the low density lipoprotein receptor (LDLR), which eventually leads to lowering of plasma cholesterol levels. In order to be recognized by the LDLR, the helix bundle has to open and undergo a conformational change. The objective of the study was to understand the mechanism of opening of the helix bundle. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) revealed that apoE3 NT domain adopts several disordered and unfolded regions, with H2 exhibiting relatively little protection against exchange-in compared to H1, H3, and H4. Site-directed fluorescence labeling indicated that H2 not only has the highest degree of solvent exposure but also the most flexibility in the helix bundle. It also indicated that the lipoprotein behavior of H1 was significnatly different from that of H2, H3 and H4. These results suggest that the opening of the helix bundle is likely initiated at the flexible end of H2 and the loop linking H2/H3, and involves movement of H2/H3 away from H1/H4. Together, these observations offer mechanistic insight suggesting a regulated helix bundle opening of apoE3 NT domain can be triggered by lipid binding.
Collapse
|
8
|
Lek MT, Cruz S, Ibe NU, Beck WHJ, Bielicki JK, Weers PMM, Narayanaswami V. Swapping the N- and C-terminal domains of human apolipoprotein E3 and AI reveals insights into their structure/activity relationship. PLoS One 2017. [PMID: 28644829 PMCID: PMC5482431 DOI: 10.1371/journal.pone.0178346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Apolipoprotein (apo) E3 and apoAI are exchangeable apolipoproteins that play a dominant role in regulating plasma lipoprotein metabolism. ApoE3 (299 residues) is composed of an N-terminal (NT) domain bearing a 4-helix bundle and a C-terminal (CT) domain bearing a series of amphipathic α-helices. ApoAI (243 residues) also comprises a highly helical NT domain and a less structured CT tail. The objective of this study was to understand their structural and functional role by generating domain swapped chimeras: apoE3-NT/apoAI-CT and apoAI-NT/apoE-CT. The bacterially overexpressed chimeras were purified by affinity chromatography and their identity confirmed by immunoblotting and mass spectrometry. Their α-helical content was comparable to that of the parent proteins. ApoE3-NT/apoAI-CT retained the denaturation profile of apoE3 NT domain, with apoAI CT tail eliciting a relatively unstructured state; its lipid binding ability improved dramatically compared to apoE3 indicative of a significant role of apoAI CT tail in lipid binding interaction. The LDL receptor interaction and ability to promote ABCA1-mediated cholesterol efflux of apoE3-NT/apoAI-CT was comparable to that of apoE3. In contrast, apoAI-NT/apoE-CT elicited an unfolding pattern and lipid binding ability that were similar to that of apoAI. As expected, DMPC/apoAI-NT/apoE-CT discoidal particles did not elicit LDLr binding ability, and promoted SR-B1 mediated cellular uptake of lipids to a limited extent. However, apoAI-NT/apoE-CT displayed an enhanced ability to promote cholesterol efflux compared to apoAI, indicative of a significant role for apoE CT domain in mediating this function. Together, these results indicate that the functional attributes of apoAI and apoE3 can be conferred on each other and that NT-CT domain interactions significantly modulate their structure and function.
Collapse
Affiliation(s)
- Mark T. Lek
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Siobanth Cruz
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Nnejiuwa U. Ibe
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Wendy H. J. Beck
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - John K. Bielicki
- Donner Laboratory, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Paul M. M. Weers
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry. Proc Natl Acad Sci U S A 2017; 114:968-973. [PMID: 28096372 DOI: 10.1073/pnas.1617523114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-β peptide, and it is associated with increased incidence of cardiovascular and Alzheimer's disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen-deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3.
Collapse
|