1
|
Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int 2024; 24:244. [PMID: 39003454 PMCID: PMC11245874 DOI: 10.1186/s12935-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule β-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
2
|
Lou H, Lin X, Wei G, Wu Z, Xiao Y. Construction of an Anoikis-Related Gene Prognostic Signature and Identification of ANGPTL4 as a Key Oncogene in Lung Adenocarcinoma. Mol Biotechnol 2024; 66:1290-1302. [PMID: 38381376 DOI: 10.1007/s12033-023-01031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 02/22/2024]
Abstract
Anoikis plays an important role in cancer invasion and metastasis. However, the role of anoikis-related genes, AnRGs, in lung adenocarcinoma (LUAD) is not clear. First, anoikis-related genes (AnRGs) were obtained from the Genecard database. Second, the prognostic risk model of AnRGs was established by univariate Cox analysis, the Least Absolute Shrinkage and Selection Operator (LASSO) analysis, and multivariate Cox analysis. Finally, in vitro cell experiments were carried out to determine the expression and function of the key gene AnRGs. Three AnRGs (angiopoietin-like 4, ANGPTL4; Cyclin-Dependent Kinase Inhibitor 3, CDKN3; Solute Carrier Organic Anion Transporter Family Member 1B3, SLCO1B3) were screened for the construction of risk prediction model. Additionally, ANGPTL4 was significantly highly expressed in tumor cells, and the knockdown of ANGPTL4 expression on tumor cells could inhibit tumor cell migration and apoptosis. Constructing a risk model based on anoikis-related genes can effectively differentiate the prognosis of LUAD. ANGPTL4 can be used as a potential new target for LUAD treatment.
Collapse
Affiliation(s)
- Hao Lou
- School of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Xuelian Lin
- Department of Oncology, Taikang Tongji (Wuhan) Hospital, Wuhan, People's Republic of China
| | - Guangyou Wei
- School of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China.
- Bo Zhou Municipal People's Hospital, Bo Zhou, People's Republic of China.
- Bozhou Clinical Medicine of Anhui University of Science & Technology, Bo Zhou, People's Republic of China.
| | - Zelai Wu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, People's Republic of China
| | - Youde Xiao
- Department of Oncology, Taikang Tongji (Wuhan) Hospital, Wuhan, People's Republic of China.
| |
Collapse
|
3
|
Deng H, Cheng F, Cheng S. Comprehensive analysis of scRNA-seq and bulk RNA-seq reveal the characteristics of disulfidptosis and a prognostic signature in BLCA. Aging (Albany NY) 2024; 16:5751-5771. [PMID: 38507521 PMCID: PMC11006495 DOI: 10.18632/aging.205686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Disulfidptosis is a newly discovered mode of cell death. However, its biological mechanism in bladder cancer (BLCA) is still uncharacterized. In this investigation, we firstly examined the expression and mutation of disulfidptosis-related genes (DRGs) in BLCA. Two disulfidptosis phenotypes associated with DRGs expression patterns and immune cell infiltration were built. A disulfidptosis risk score signature was constructed based on ten differentially expressed genes (DEGs) between the disulfidptosis subtypes, which allowed patients to be stratified into high- and low-risk groups. We further confirmed that the disulfidptosis risk score signature has great power to predict prognosis, immune cell infiltration, and immunotherapy efficacy in BLCA. Additionally, we analyzed the differences in therapeutic sensitivities between high- and low-risk groups concerning targeted inhibitor therapy and immunotherapy. Analysis of single-cell RNA sequencing was conducted of the ten hub DRGs. Of the ten genes, we found that DUSP2 and SLCO1B3 were differentially expressed in BLCA tissues and adjacent normal tissues, and were markedly associated with patients' prognosis. Functional experiments revealed that overexpression of DUSP2 or knockdown of SLCO1B3 significantly inhibited cell proliferation, migration, and invasion in BLCA cells. In all, we present a fresh disulfidptosis-related prognostic signature, which has a remarkable capacity to characterize the immunological landscape and prognosis of BLCA patients.
Collapse
Affiliation(s)
- Hao Deng
- Department of Urology, The First People’s Hospital of Jingzhou, Jingzhou 434000, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shaoping Cheng
- Department of Urology, The First People’s Hospital of Jingzhou, Jingzhou 434000, China
| |
Collapse
|
4
|
Zhu X, Chen Y, Lan T, Liu C. Transcriptome analysis of healthy and fatty liver revealed that inhibition of SLCO1B3 induces abnormal liver metabolism and lipid synthesis. Poult Sci 2023; 102:103023. [PMID: 37748246 PMCID: PMC10523000 DOI: 10.1016/j.psj.2023.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
The liver serves as the central organ for lipid metabolism, making it a crucial component of chicken physiology. However, the intricate regulation of lipid absorption, synthesis, decomposition, and transport within the liver is influenced by various factors, such as environmental conditions, diet, and genetics. Recent research has suggested that numerous functional genes and transcription factors play a pivotal role in liver metabolism via different molecular mechanisms. In this study, we examined the transcriptomes of both healthy and fatty chicken livers to better understand the role of functional genes in chicken liver fat metabolism. Our bioinformatics analysis of RNA-seq data revealed differential expression of SLCO1B3 in healthy liver and fatty liver, with lower ex-pression levels observed in fatty liver. To further investigate the potential role of SLCO1B3 in liver metabolism, we conducted in vitro experiments to knock down its expression in primary hepatocytes. Our results indicated that SLCO1B3 could suppress lipogenesis, hepatocyte apoptosis, and inflammation. These findings provide insight into the molecular mechanism of SLCO1B3 as a functional gene capable of regulating fat metabolism in chicken liver, and may contribute to ad-dressing the issue of fatty liver in chicken.
Collapse
Affiliation(s)
- Xiaomu Zhu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yi Chen
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Tian Lan
- Division of liver surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China; Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu 610213, PR China
| | - Chang Liu
- Division of liver surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Minimal Invasive Surgery, Shangjin Nanfu Hospital, Chengdu 610037, PR China.
| |
Collapse
|
5
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
6
|
Haberkorn B, Löwen D, Meier L, Fromm MF, König J. Transcriptional Regulation of Liver-Type OATP1B3 (Lt-OATP1B3) and Cancer-Type OATP1B3 (Ct-OATP1B3) Studied in Hepatocyte-Derived and Colon Cancer-Derived Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15030738. [PMID: 36986600 PMCID: PMC10051083 DOI: 10.3390/pharmaceutics15030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Due to alternative splicing, the SLCO1B3 gene encodes two protein variants; the hepatic uptake transporter liver-type OATP1B3 (Lt-OATP1B3) and the cancer-type OATP1B3 (Ct-OATP1B3) expressed in several cancerous tissues. There is limited information about the cell type-specific transcriptional regulation of both variants and about transcription factors regulating this differential expression. Therefore, we cloned DNA fragments from the promoter regions of the Lt-SLCO1B3 and the Ct-SLCO1B3 gene and investigated their luciferase activity in hepatocellular and colorectal cancer cell lines. Both promoters showed differences in their luciferase activity depending on the used cell lines. We identified the first 100 bp upstream of the transcriptional start site as the core promoter region of the Ct-SLCO1B3 gene. In silico predicted binding sites for the transcription factors ZKSCAN3, SOX9 and HNF1α localized within these fragments were further analyzed. The mutagenesis of the ZKSCAN3 binding site reduced the luciferase activity of the Ct-SLCO1B3 reporter gene construct in the colorectal cancer cell lines DLD1 and T84 to 29.9% and 14.3%, respectively. In contrast, using the liver-derived Hep3B cells, 71.6% residual activity could be measured. This indicates that the transcription factors ZKSCAN3 and SOX9 are important for the cell type-specific transcriptional regulation of the Ct-SLCO1B3 gene.
Collapse
Affiliation(s)
| | | | | | | | - Jörg König
- Correspondence: ; Tel.: +49-9131-8522077
| |
Collapse
|
7
|
Haberkorn B, Oswald S, Kehl N, Gessner A, Taudte RV, Dobert JP, Zunke F, Fromm MF, König J. Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) is localized in lysosomes and mediates resistance against kinase inhibitors. Mol Pharmacol 2022; 102:MOLPHARM-AR-2022-000539. [PMID: 36167426 DOI: 10.1124/molpharm.122.000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3), a splice variant of the hepatic uptake transporter OATP1B3 (liver-type; Lt-OATP1B3), is expressed in several tumor entities including colorectal carcinoma (CRC) and breast cancer. In CRC, high OATP1B3 expression has been associated with reduced progression-free and overall survival. Several kinase inhibitors used for antitumor treatment are substrates and/or inhibitors of OATP1B3 (e.g. encorafenib, vemurafenib). The functional importance of Ct-OATP1B3 has not been elucidated so far. HEK293 cells stably overexpressing Ct-OATP1B3 protein were established and compared with control cells. Confocal laser scanning microscopy, immunoblot, and proteomics-based expression analysis demonstrated that Ct-OATP1B3 protein is intracellularly localized in lysosomes of stably-transfetced cells. Cytotoxicity experiments showed that cells recombinantly expressing the Ct-OATP1B3 protein were more resistant against the kinase inhibitor encorafenib compared to control cells [e.g. encorafenib (100 µM) survival rates: 89.5% vs. 52.8%]. In line with these findings, colorectal cancer DLD1 cells endogenously expressing Ct-OATP1B3 protein had poorer survival rates when the OATP1B3 substrate bromosulfophthalein (BSP) was coincubated with encorafenib or vemurafenib compared to the incubation with the kinase inhibitor alone. This indicates a competitive inhibition of Ct-OATP1B3-mediated uptake into lysosomes by BSP. Accordingly, mass spectrometry-based drug analysis of lysosomes showed a reduced lysosomal accumulation of encorafenib in DLD1 cells additionally exposed to BSP. These results demonstrate that Ct-OATP1B3 protein is localized in the lysosomal membrane and can mediate transport of certain kinase inhibitors into lysosomes revealing a new mechanism of resistance. Significance Statement We describe the characterization of a splice variant of the liver-type uptake transporter OATP1B3 expressed in several tumor entities. This variant is localized in lysosomes mediating resistance against kinase inhibitors which are substrates of this transport protein by transporting them into lysosomes and thereby reducing the cytoplasmic concentration of these antitumor agents. Therefore, the expression of the Ct-OATP1B3 protein is associated with a better survival of cells revealing a new mechanism of drug resistance.
Collapse
Affiliation(s)
- Bastian Haberkorn
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Stefan Oswald
- Department of Pharmacology, Rostock University Medical Center, Germany
| | - Niklas Kehl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - R Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jan Philipp Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
8
|
Yi C, Yu AM. MicroRNAs in the Regulation of Solute Carrier Proteins Behind Xenobiotic and Nutrient Transport in Cells. Front Mol Biosci 2022; 9:893846. [PMID: 35755805 PMCID: PMC9220936 DOI: 10.3389/fmolb.2022.893846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Altered metabolism, such as aerobic glycolysis or the Warburg effect, has been recognized as characteristics of tumor cells for almost a century. Since then, there is accumulating evidence to demonstrate the metabolic reprogramming of tumor cells, addiction to excessive uptake and metabolism of key nutrients, to support rapid proliferation and invasion under tumor microenvironment. The solute carrier (SLC) superfamily transporters are responsible for influx or efflux of a wide variety of xenobiotic and metabolites that are needed for the cells to function, as well as some medications. To meet the increased demand for nutrients and energy, SLC transporters are frequently dysregulated in cancer cells. The SLCs responsible for the transport of key nutrients for cancer metabolism and energetics, such as glucose and amino acids, are of particular interest for their roles in tumor progression and metastasis. Meanwhile, rewired metabolism is accompanied by the dysregulation of microRNAs (miRNAs or miRs) that are small, noncoding RNAs governing posttranscriptional gene regulation. Studies have shown that many miRNAs directly regulate the expression of specific SLC transporters in normal or diseased cells. Changes of SLC transporter expression and function can subsequently alter the uptake of nutrients or therapeutics. Given the important role for miRNAs in regulating disease progression, there is growing interest in developing miRNA-based therapies, beyond serving as potential diagnostic or prognostic biomarkers. In this article, we discuss how miRNAs regulate the expression of SLC transporters and highlight potential influence on the supply of essential nutrients for cell metabolism and drug exposure toward desired efficacy.
Collapse
Affiliation(s)
- Colleen Yi
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
9
|
Jiang S, Luo Y, Zhan Z, Tang Z, Zou J, Ying Y, Lin H, Huang D, Luo L. AMP-activated protein kinase re-sensitizes A549 to paclitaxel via up-regulating solute carrier organic anion transporter family member 1B3 expression. Cell Signal 2022; 91:110215. [PMID: 34920124 DOI: 10.1016/j.cellsig.2021.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022]
|
10
|
Ferritinophagy-Mediated ROS Production Contributed to Proliferation Inhibition, Apoptosis, and Ferroptosis Induction in Action of Mechanism of 2-Pyridylhydrazone Dithiocarbamate Acetate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5594059. [PMID: 34691357 PMCID: PMC8531783 DOI: 10.1155/2021/5594059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 01/17/2023]
Abstract
Reactive oxygen species (ROS) production is involved in the mechanism of action of a number of drugs, but the biological effects of ROS remain to be clarified. Furthermore, ferroptosis involves iron-dependent ROS production that may be derived from ferritinophagy; however, the association between ferroptosis and ferritinophagy has not been fully established. The present study demonstrated that dithiocarbamate derivatives (iron chelators) exhibited antineoplastic properties involving ferritinophagy induction, but whether the underlying mechanisms involved ferroptosis was unknown. To gain insight into the underlying mechanism, a dithiocarbamate derivative, 2-pyridylhydrazone dithiocarbamate s-acetic acid (PdtaA), was prepared. An MTT assay demonstrated that PdtaA inhibited proliferation involving ROS production (IC50 = 23.0 ± 1.5 μM for HepG2 cells). A preliminary mechanistic study revealed that PdtaA induced both apoptosis and cell cycle arrest. Notably, PdtaA also induced ferroptosis via downregulation of GPx4 and xCT, which was first reported for a dithiocarbamate derivative. Moreover, these cellular events were associated with ROS production. To explore the origin of ROS, expression of the ferritinophagy-related genes, ferritin, and nuclear receptor coactivator (NCOA4) were measured. Immunofluorescence and western blotting analysis indicated that PdtaA-induced ferritinophagy may contribute to ROS production. To investigate the role of ferritinophagy, autophagy inhibitor 3-methyladenin or genetic knockdown of NCOA4 was employed to inhibit ferritinophagy, which significantly neutralized the action of PdtaA in both apoptosis and ferroptosis. Taken together, PdtaA-induced cell cycle arrest, apoptosis, and ferroptosis were associated with ferritinophagy.
Collapse
|
11
|
Kim YG, Sung H, Shin HS, Kim MJ, Lee JS, Park SS, Seong MW. Intronic LINE-1 insertion in SLCO1B3 as a highly prevalent cause of rotor syndrome in East Asian population. J Hum Genet 2021; 67:71-77. [PMID: 34354231 DOI: 10.1038/s10038-021-00967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/09/2022]
Abstract
Rotor syndrome is caused by digenic loss-of-function variants in SLCO1B1 and SLCO1B3 but only a few studies have reported co-occurring inactivating variants from both genes. A rotor syndrome-causing long interspersed element-1 (LINE-1) insertion in SLCO1B3 had been reported to be highly prevalent in the Japanese population but there has been no additional report. In spite of its known association with various human diseases, LINE-1 is hard to detect with current sequencing technologies. In this study, we aimed to devise a method to screen the LINE-1 insertion variant and investigate the frequency of this variant in various populations. A chimeric sequence, that was generated by concatenating the reference sequence at the junction and a part of inserted LINE-1 sequence, was searched from 725 raw sequencing data files. In cases containing the chimeric sequence, confirmatory long-range PCR and gap-PCR were performed. In total, 95 (13.1%) of 725 patients were positive for the chimeric sequence, and all were confirmed to have the SLCO1B3 LINE-1 insertion by PCR-based tests. The same chimeric sequence was searched from the 1000 Genomes Project data repository and the carrier frequency was remarkably high in the East Asian populations (10.1%), especially in Southern Han Chinese (18.5%), but almost absent in other populations. This SLCO1B3 LINE-1 insertion should be screened in a population-specific manner under suspicion of Rotor syndrome and the methods proposed in this study would enable this in a simple way.
Collapse
Affiliation(s)
- Young-Gon Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hobin Sung
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Seob Shin
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Man Jin Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Dou J, Cánovas A, Brito LF, Yu Y, Schenkel FS, Wang Y. Comprehensive RNA-Seq Profiling Reveals Temporal and Tissue-Specific Changes in Gene Expression in Sprague-Dawley Rats as Response to Heat Stress Challenges. Front Genet 2021; 12:651979. [PMID: 33897767 PMCID: PMC8063118 DOI: 10.3389/fgene.2021.651979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding heat stress physiology and identifying reliable biomarkers are paramount for developing effective management and mitigation strategies. However, little is known about the molecular mechanisms underlying thermal tolerance in animals. In an experimental model of Sprague–Dawley rats subjected to temperatures of 22 ± 1°C (control group; CT) and 42°C for 30 min (H30), 60 min (H60), and 120 min (H120), RNA-sequencing (RNA-Seq) assays were performed for blood (CT and H120), liver (CT, H30, H60, and H120), and adrenal glands (CT, H30, H60, and H120). A total of 53, 1,310, and 1,501 differentially expressed genes (DEGs) were significantly identified in the blood (P < 0.05 and |fold change (FC)| >2), liver (P < 0.01, false discovery rate (FDR)–adjusted P = 0.05 and |FC| >2) and adrenal glands (P < 0.01, FDR-adjusted P = 0.05 and |FC| >2), respectively. Of these, four DEGs, namely Junb, P4ha1, Chordc1, and RT1-Bb, were shared among the three tissues in CT vs. H120 comparison. Functional enrichment analyses of the DEGs identified in the blood (CT vs. H120) revealed 12 biological processes (BPs) and 25 metabolic pathways significantly enriched (FDR = 0.05). In the liver, 133 BPs and three metabolic pathways were significantly detected by comparing CT vs. H30, H60, and H120. Furthermore, 237 BPs were significantly (FDR = 0.05) enriched in the adrenal glands, and no shared metabolic pathways were detected among the different heat-stressed groups of rats. Five and four expression patterns (P < 0.05) were uncovered by 73 and 91 shared DEGs in the liver and adrenal glands, respectively, over the different comparisons. Among these, 69 and 73 genes, respectively, were proposed as candidates for regulating heat stress response in rats. Finally, together with genome-wide association study (GWAS) results in cattle and phenome-wide association studies (PheWAS) analysis in humans, five genes (Slco1b2, Clu, Arntl, Fads1, and Npas2) were considered as being associated with heat stress response across mammal species. The datasets and findings of this study will contribute to a better understanding of heat stress response in mammals and to the development of effective approaches to mitigate heat stress response in livestock through breeding.
Collapse
Affiliation(s)
- Jinhuan Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Angela Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Tonry C, Finn S, Armstrong J, Pennington SR. Clinical proteomics for prostate cancer: understanding prostate cancer pathology and protein biomarkers for improved disease management. Clin Proteomics 2020; 17:41. [PMID: 33292167 PMCID: PMC7678104 DOI: 10.1186/s12014-020-09305-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Following the introduction of routine Prostate Specific Antigen (PSA) screening in the early 1990's, Prostate Cancer (PCa) is often detected at an early stage. There are also a growing number of treatment options available and so the associated mortality rate is generally low. However, PCa is an extremely complex and heterogenous disease and many patients suffer disease recurrence following initial therapy. Disease recurrence commonly results in metastasis and metastatic PCa has an average survival rate of just 3-5 years. A significant problem in the clinical management of PCa is being able to differentiate between patients who will respond to standard therapies and those who may benefit from more aggressive intervention at an earlier stage. It is also acknowledged that for many men the disease is not life threatenting. Hence, there is a growing desire to identify patients who can be spared the significant side effects associated with PCa treatment until such time (if ever) their disease progresses to the point where treatment is required. To these important clinical needs, current biomarkers and clinical methods for patient stratification and personlised treatment are insufficient. This review provides a comprehensive overview of the complexities of PCa pathology and disease management. In this context it is possible to review current biomarkers and proteomic technologies that will support development of biomarker-driven decision tools to meet current important clinical needs. With such an in-depth understanding of disease pathology, the development of novel clinical biomarkers can proceed in an efficient and effective manner, such that they have a better chance of improving patient outcomes.
Collapse
Affiliation(s)
- Claire Tonry
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
| | | | | |
Collapse
|
14
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|