1
|
Tian W, Liu L, Wang R, Quan Y, Tang B, Yu D, Zhang L, Hua H, Zhao J. Gut microbiota in insulin resistance: a bibliometric analysis. J Diabetes Metab Disord 2024; 23:173-188. [PMID: 38932838 PMCID: PMC11196565 DOI: 10.1007/s40200-023-01342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/06/2023] [Indexed: 06/28/2024]
Abstract
Background Insulin resistance (IR) is considered the pathogenic driver of diabetes, and can lead to obesity, hypertension, coronary artery disease, metabolic syndrome, and other metabolic disorders. Accumulating evidence indicates that the connection between gut microbiota and IR. This bibliometric analysis aimed to summarize the knowledge structure of gut microbiota in IR. Methods Articles and reviews related to gut microbiota in IR from 2013 to 2022 were retrieved from the Web of Science Core Collection (WoSCC), and the bibliometric analysis and visualization were performed by Microsoft Excel, Origin, R package (bibliometrix), Citespace, and VOSviewer. Results A total of 4 749 publications from WoSCC were retrieved, including 3 050 articles and 1 699 reviews. The majority of publications were from China and USA. The University Copenhagen and Shanghai Jiao Tong University were the most active institutions. The journal of Nutrients published the most papers, while Nature was the top 1 co-cited journal, and the major area of these publications was molecular, biology, and immunology. Nieuwdorp M published the highest number of papers, and Cani PD had the highest co-citations. Keyword analysis showed that the most frequently occurring keywords were "gut microbiota", "insulin-resistance", "obesity", and "inflammation". Trend topics and thematic maps showed that serum metabolome and natural products, such as resveratrol, flavonoids were the research hotspots in this field. Conclusion This bibliometric analysis summarised the hotspots, frontiers, pathogenesis, and treatment strategies, providing a clear and comprehensive profile of gut microbiota in IR. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01342-x.
Collapse
Affiliation(s)
- Weiwei Tian
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Li Liu
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yunyun Quan
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Bihua Tang
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Dongmei Yu
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Hua Hua
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Junning Zhao
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| |
Collapse
|
2
|
Abot A, Fried S, Cani PD, Knauf C. Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxid Redox Signal 2022; 37:394-415. [PMID: 34714099 DOI: 10.1089/ars.2021.0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The role of reactive oxygen/nitrogen species as "friend" or "foe" messengers in the whole body is well characterized. Depending on the concentration in the tissue considered, these molecular actors exert beneficial or deleterious impacts leading to a pathological state, as observed in metabolic disorders such as type 2 diabetes and obesity. Recent Advances: Among the tissues impacted by oxidation and inflammation in this pathological state, the intestine is a site of dysfunction that can establish diabetic symptoms, such as alterations in the intestinal barrier, gut motility, microbiota composition, and gut/brain axis communication. In the intestine, reactive oxygen/nitrogen species (from the host and/or microbiota) are key factors that modulate the transition from physiological to pathological signaling. Critical Issues: Controlling the levels of intestinal reactive oxygen/nitrogen species is a complicated balance between positive and negative impacts that is in constant equilibrium. Here, we describe the synthesis and degradation of intestinal reactive oxygen/nitrogen species and their interactions with the host. The development of novel redox-based therapeutics that alter these processes could restore intestinal health in patients with metabolic disorders. Future Directions: Deciphering the mode of action of reactive oxygen/nitrogen species in the gut of obese/diabetic patients could result in a future therapeutic strategy that combines nutritional and pharmacological approaches. Consequently, preventive and curative treatments must take into account one of the first sites of oxidative and inflammatory dysfunctions in the body, that is, the intestine. Antioxid. Redox Signal. 37, 394-415.
Collapse
Affiliation(s)
- Anne Abot
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Steven Fried
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Patrice D Cani
- International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France.,UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Claude Knauf
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| |
Collapse
|
3
|
Khalil M, Serale N, Diab F, Baldini F, Portincasa P, Lupidi G, Vergani L. Beneficial Effects of Carvacrol on In Vitro Models of Metabolically-Associated Liver Steatosis and Endothelial Dysfunction: A Role for Fatty Acids in Interfering with Carvacrol Binding to Serum Albumin. Curr Med Chem 2022; 29:5113-5129. [PMID: 35366761 DOI: 10.2174/0929867329666220401103643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
Background:
Carvacrol, a plant phenolic monoterpene, is largely employed as
food additive and phytochemical.
Objective:
We aimed to assess the lipid lowering and protective effects of carvacrol in
vitro using cellular models of hepatic steatosis and endothelial dysfunction. We also investigated if and how the binding of carvacrol to albumin, the physiological transporter
for small compounds in the blood, might be altered by the presence of high levels of fatty
acids (FAs).
Methods:
Hepatic FaO cells treated with exogenous FAs mimic hepatosteatosis; endothelial HECV cells exposed to hydrogen peroxide are a model of endothelial dysfunction. In
these models, we measured spectrophotometrically lipid accumulation and release,
lipoperoxidation, free radical production, and nitric oxide release before and after treatment with carvacrol. The carvacrol binding to albumin in the presence or absence of high
levels of FAs was assessed by absorption and emission spectroscopies.
Results:
Carvacrol counteracted lipid accumulation and oxidative stress in hepatocytes
and protected endothelial cells from oxidative stress and dysfunction. Moreover, high levels of FAs reduced the binding of carvacrol to albumin.
Conclusion:
The results suggest the good potential of carvacrol in ameliorating dysfunction of hepatic and endothelial cells in vitro. High levels of circulating FAs might compete with carvacrol for binding to albumin thus influencing its transport and bio-distribution.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, Italy
| | - Nadia Serale
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, Italy
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University
of Genova, Corso Europa 26, 16132, Haly
| | - Francesca Baldini
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia,
Genoa, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University
of Genova, Corso Europa 26, 16132, Haly
| |
Collapse
|
4
|
Hui Yan T, Babji AS, Lim SJ, Sarbini SR. A Systematic Review of Edible Swiftlet's Nest (ESN): Nutritional bioactive compounds, health benefits as functional food, and recent development as bioactive ESN glycopeptide hydrolysate. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Maintaining Digestive Health in Diabetes: The Role of the Gut Microbiome and the Challenge of Functional Foods. Microorganisms 2021; 9:microorganisms9030516. [PMID: 33802371 PMCID: PMC8001283 DOI: 10.3390/microorganisms9030516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Over the last decades, the incidence of diabetes has increased in developed countries and beyond the genetic impact, environmental factors, which can trigger the activation of the gut immune system, seem to affect the induction of the disease process. Since the composition of the gut microbiome might disturb the normal interaction with the immune system and contribute to altered immune responses, the restoration of normal microbiota composition constitutes a new target for the prevention and treatment of diabetes. Thus, the interaction of gut microbiome and diabetes, focusing on mechanisms connecting gut microbiota with the occurrence of the disorder, is discussed in the present review. Finally, the challenge of functional food diet on maintaining intestinal health and microbial flora diversity and functionality, as a potential tool for the onset inhibition and management of the disease, is highlighted by reporting key animal studies and clinical trials. Early onset of the disease in the oral cavity is an important factor for the incorporation of a functional food diet in daily routine.
Collapse
|
6
|
Guimarães JT, Balthazar CF, Silva R, Rocha RS, Graça JS, Esmerino EA, Silva MC, Sant’Ana AS, Duarte MCKH, Freitas MQ, Cruz AG. Impact of probiotics and prebiotics on food texture. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.12.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|