1
|
Hassan M, Shahzadi S, Li MS, Kloczkowski A. Prediction and Evaluation of Protein Aggregation with Computational Methods. Methods Mol Biol 2025; 2867:299-314. [PMID: 39576588 DOI: 10.1007/978-1-0716-4196-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Protein and peptide aggregation has recently become one of the most studied biomedical problems due to its central role in several neurodegenerative disorders and of biotechnological importance. Multiple in silico methods, databases, tools, and algorithms have been developed to predict aggregation of proteins and peptides to better understand fundamental mechanisms of various aggregation diseases. Here, we attempt to provide a brief overview of bioinformatic methods and tools to better understand molecular mechanisms of aggregation disorders. Furthermore, through a better understanding of protein aggregation mechanisms, it might be possible to design novel therapeutic agents to treat and hopefully prevent protein aggregation diseases.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Ononugbo CM, Shimura Y, Yamano-Adachi N, Omasa T, Koga Y. Rational design approach to improve the solubility of the β-sandwich domain 1 of a thermophilic protein. J Biosci Bioeng 2024; 138:271-282. [PMID: 39074993 DOI: 10.1016/j.jbiosc.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
The β-sandwich domain 1 (SD1) of islandisin is a stable thermophilic protein with surface loops that can be redesigned for specific target binding, architecturally comparable to the variable domain of immunoglobulin (IgG). SD1's propensity to aggregate due to incorrect folding and subsequent accumulation in Escherichia coli inclusion bodies limits its use in biotechnological applications. We rationally designed SD1 for improved variants that were expressed in soluble forms in E. coli while maintaining the intrinsic thermal stability of the protein (melting temperature (Tm) = 73). We used FoldX's ΔΔG predictions to find beneficial mutations and aggregation-prone regions (APRs) using Tango. The S26K substitution within protein core residues did not affect protein stability. Among the soluble mutants studied, the S26K/Q91P combination significantly improved the expression and solubility of SD1. We also examined the effects of the surface residue, pH, and concentration on the solubility of SD1. We showed that the surface polarity of proteins had little or no effect on solubility, whereas surface charges played a substantial role. The storage stability of several SD1 variants was impaired at pH values near their isoelectric point, and pH levels resulting in highly charged groups. We observed that mutations that create an uneven distribution of charged groups on the SD1 surface could enhance protein solubility by eliminating favorable protein-protein surface charge interactions. Our findings suggest that SD1 is mutationally tolerant to new functionalities, thus providing a novel perspective for the application of rational design to improve the solubility of targeted proteins.
Collapse
Affiliation(s)
- Chukwuebuka M Ononugbo
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusaku Shimura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama 700-0005, Japan.
| |
Collapse
|
3
|
Oduro-Kwateng E, Ali M, Kehinde IO, Zhang Z, Soliman MES. De Novo Rational Design of Peptide-Based Protein-Protein Inhibitors (Pep-PPIs) Approach by Mapping the Interaction Motifs of the PP Interface and Physicochemical Filtration: A Case on p25-Cdk5-Mediated Neurodegenerative Diseases. J Cell Biochem 2024; 125:e30633. [PMID: 39148280 DOI: 10.1002/jcb.30633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Protein-protein interactions, or PPIs, are a part of every biological activity and have been linked to a number of diseases, including cancer, infectious diseases, and neurological disorders. As such, targeting PPIs is considered a strategic and vital approach in the development of new medications. Nonetheless, the wide and flat contact interface makes it difficult to find small-molecule PP inhibitors. An alternative strategy would be to use the PPI interaction motifs as building blocks for the design of peptide-based inhibitors. Herein, we designed 12-mer peptide inhibitors to target p25-inducing-cyclin-dependent kinase (Cdk5) hyperregulation, a PPI that has been shown to perpetuate neuroinflammation, which is one of the major causal implications of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. We generated a library of 5 062 500 peptide combination sequences (PCS) derived from the interaction motif of Cdk5/p25 PP interface. The 20 amino acids were differentiated into six groups, namely, hydrophobic (aliphatic), aromatic, basic, acidic, unique, and polar uncharged, on the basis of their physiochemical properties. To preserve the interaction motif necessary for ideal binding, de novo modeling of all possible peptide sequence substitutions was considered. A set of filters, backed by the Support Vector Machine (SVM) algorithm, was then used to create a shortlisted custom peptide library that met specific bioavailability, toxicity, and therapeutic relevance, leading to a refined library of 15 PCS. A greedy algorithm and coarse-grained force field were used to predict peptide structure and folding before subsequent modeling studies. Molecular docking was performed to estimate the relative binding affinities, and out of the top hits, Pep15 was subjected to molecular dynamics simulations and binding free-energy calculations in comparison to a known peptide inhibitor with experimental data (template peptide). Interestingly, the identified peptide through our protocol, Pep15, was found to show a significantly higher binding affinity than the reference template peptide (-48.10 ± 0.23 kcal/mol and -17.53 ± 0.27 kcal/mol, respectively). In comparison to the template peptide, Pep15 was found to possess a more compact and buried surface area, tighter binding landscape, and reduced conformational variability, leading to enhanced structural and kinetic stability of the Cdk5/p25 complex. Notably, both peptide inhibitors were found to have a minimal impact on the architectural integrity of the Cdk5/p25 secondary structure. Herein, we propose Pep15 as a novel and potentially disruptive peptide drug for Cdk5/p25-mediated neurodegenerative phenotypes that require further clinical investigation. The systematic protocol and findings of this report would serve as a valuable tool in the identification of critical PPI interface reactive residues, designing of analogs, and identification of more potent peptide-based PPI inhibitors.
Collapse
Affiliation(s)
- Ernest Oduro-Kwateng
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Musab Ali
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Ibrahim Oluwatobi Kehinde
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
4
|
Gonçalves AAM, Ribeiro AJ, Resende CAA, Couto CAP, Gandra IB, Dos Santos Barcelos IC, da Silva JO, Machado JM, Silva KA, Silva LS, Dos Santos M, da Silva Lopes L, de Faria MT, Pereira SP, Xavier SR, Aragão MM, Candida-Puma MA, de Oliveira ICM, Souza AA, Nogueira LM, da Paz MC, Coelho EAF, Giunchetti RC, de Freitas SM, Chávez-Fumagalli MA, Nagem RAP, Galdino AS. Recombinant multiepitope proteins expressed in Escherichia coli cells and their potential for immunodiagnosis. Microb Cell Fact 2024; 23:145. [PMID: 38778337 PMCID: PMC11110257 DOI: 10.1186/s12934-024-02418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.
Collapse
Affiliation(s)
- Ana Alice Maia Gonçalves
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Anna Julia Ribeiro
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carlos Ananias Aparecido Resende
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carolina Alves Petit Couto
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isadora Braga Gandra
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isabelle Caroline Dos Santos Barcelos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Jonatas Oliveira da Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Juliana Martins Machado
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Kamila Alves Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Líria Souza Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Michelli Dos Santos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Lucas da Silva Lopes
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Teixeira de Faria
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sabrina Paula Pereira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sandra Rodrigues Xavier
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Matheus Motta Aragão
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Mayron Antonio Candida-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | | | - Amanda Araujo Souza
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Lais Moreira Nogueira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Campos da Paz
- Bioactives and Nanobiotechnology Laboratory, Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Postgraduate Program in Health Sciences, Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, National Institute of Science and Technology on Tropical Diseases (INCT-DT), Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Sonia Maria de Freitas
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | - Ronaldo Alves Pinto Nagem
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil.
| |
Collapse
|
5
|
Zarzar J, Khan T, Bhagawati M, Weiche B, Sydow-Andersen J, Alavattam S. High concentration formulation developability approaches and considerations. MAbs 2023; 15:2211185. [PMID: 37191233 DOI: 10.1080/19420862.2023.2211185] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The growing need for biologics to be administered subcutaneously and ocularly, coupled with certain indications requiring high doses, has resulted in an increase in drug substance (DS) and drug product (DP) protein concentrations. With this increase, more emphasis must be placed on identifying critical physico-chemical liabilities during drug development, including protein aggregation, precipitation, opalescence, particle formation, and high viscosity. Depending on the molecule, liabilities, and administration route, different formulation strategies can be used to overcome these challenges. However, due to the high material requirements, identifying optimal conditions can be slow, costly, and often prevent therapeutics from moving rapidly into the clinic/market. In order to accelerate and derisk development, new experimental and in-silico methods have emerged that can predict high concentration liabilities. Here, we review the challenges in developing high concentration formulations, the advances that have been made in establishing low mass and high-throughput predictive analytics, and advances in in-silico tools and algorithms aimed at identifying risks and understanding high concentration protein behavior.
Collapse
Affiliation(s)
- Jonathan Zarzar
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Tarik Khan
- Pharma Technical Development Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Maniraj Bhagawati
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - Benjamin Weiche
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - Jasmin Sydow-Andersen
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | | |
Collapse
|
6
|
Woodard J, Iqbal S, Mashaghi A. Circuit topology predicts pathogenicity of missense mutations. Proteins 2022; 90:1634-1644. [PMID: 35394672 PMCID: PMC9543832 DOI: 10.1002/prot.26342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022]
Abstract
The contact topology of a protein determines important aspects of the folding process. The topological measure of contact order has been shown to be predictive of the rate of folding. Circuit topology is emerging as another fundamental descriptor of biomolecular structure, with predicted effects on the folding rate. We analyze the residue‐based circuit topological environments of 21 K mutations labeled as pathogenic or benign. Multiple statistical lines of reasoning support the conclusion that the number of contacts in two specific circuit topological arrangements, namely inverse parallel and cross relations, with contacts involving the mutated residue have discriminatory value in determining the pathogenicity of human variants. We investigate how results vary with residue type and according to whether the gene is essential. We further explore the relationship to a number of structural features and find that circuit topology provides nonredundant information on protein structures and pathogenicity of mutations. Results may have implications for the polymer physics of protein folding and suggest that “local” topological information, including residue‐based circuit topology and residue contact order, could be useful in improving state‐of‐the‐art machine learning algorithms for pathogenicity prediction.
Collapse
Affiliation(s)
- Jaie Woodard
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden, The Netherlands.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sumaiya Iqbal
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden, The Netherlands.,Centre for Interdisciplinary Genome Research, Faculty of Science, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Basak A, Basak S. Protein Aggregation and Self Assembly in Health and Disease. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210223160742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Self-attachment of proteins leading to the formation of highly insoluble protein oligomers and aggregates has become an important focus of research owing to its diverse implications in pathophysiology and diseases. This has become a more frequent phenomenon in most neurological and neurodegenerative diseases as well as in dementia. In recent years such event of protein aggregation has linked to other disease conditions, disorders or adverse health conditions. Interestingly, aggregation of protein also plays role in development, growth or metabolism. Most often physiological proteins are initially bio-synthesised in native or nascent geometrical forms or conformations but later they undergo specific folding pattern and thereby acquire a stable configuration that is biologically relevant and active. It is highly important that these proteins remain in their biologically active configuration in order to exert their functional properties. Any alteration or change to this structural configuration can be detrimental to their specific functions and may cause pathological consequences leading to the onset of diseases or disorders. Several factors such as the action of chaperones, binding partners, physiological metal ions, pH level, temperature, ionic strength, interfacial exposure (solid-liquid, liquid-liquid, gas-liquid), mutation and post translational modification, chemical changes, interaction with small molecules such as lipids, hormones, etc. and solvent environment have been either identified or proposed as important factors in conferring the ultimate status of protein structure and configuration.
Among many misfolding protein conformations, self-assembly or aggregation is the most significant. It leads to the formation of highly oligomeric self-aggregates that precipitate and interfere with many biochemical processes with serious pathological consequences. The most common implication of protein aggregation leading to the formation of deposits / plaques of various morphological types is the onset of neurological and neurodegenerative diseases that include Alzheimer’s, Parkinson’s, Huntington, ALS (Amyotrophic Lateral Sclerosis), CJD (Creutzfeldt Jakob Dementia), Prion diseases, Amyloidosis and other forms of dementia. However increasingly studies revealed that protein aggregation may also be associated with other diseases such as cancer, type 2 diabetes, renal, corneal and cardiovascular diseases. Protein aggregation diseases are now considered as part of “Proteinopathy” which refers to conditions where proteins become structurally abnormal or fail to fold into stable normal configurations. In this review, we reflect on various aspects of protein self-aggregation, potential underlying causes, mechanism, role of secondary structures, pathological consequences and possible intervention strategies as reported in published literatures.
Collapse
Affiliation(s)
- Ajoy Basak
- Pathology and Laboratory Medicine, Faculty of Medicine, U Ottawa, Canada
- Ottawa Hospital Research Institute,
The Ottawa Hospital, U Ottawa, Canada
| | - Sarmistha Basak
- Formerly of Kidney Research Center, Ottawa Hospital Research Institute, U Ottawa, Canada
| |
Collapse
|
8
|
Pujols J, Iglesias V, Santos J, Kuriata A, Kmiecik S, Ventura S. A3D 2.0 Update for the Prediction and Optimization of Protein Solubility. Methods Mol Biol 2022; 2406:65-84. [PMID: 35089550 DOI: 10.1007/978-1-0716-1859-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation propensity is a property imprinted in protein sequences and structures, being associated with the onset of human diseases and limiting the implementation of protein-based biotherapies. Computational approaches stand as cost-effective alternatives for reducing protein aggregation and increasing protein solubility. AGGRESCAN 3D (A3D) is a structure-based predictor of aggregation that takes into account the conformational context of a protein, aiming to identify aggregation-prone regions exposed in protein surfaces. Here we inspect the updated 2.0 version of the algorithm, which extends the application of A3D to previously inaccessible proteins and incorporates new modules to assist protein redesign. Among these features, the new server includes stability calculations and the possibility to optimize protein solubility using an experimentally validated computational pipeline. Finally, we employ defined examples to navigate the A3D RESTful service, a routine to handle extensive protein collections. Altogether, this chapter is conceived to train and assist A3D non-experts in the study of aggregation-prone regions and protein solubility redesign.
Collapse
Affiliation(s)
- Jordi Pujols
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barelona (UAB), Barcelona, Spain
| | - Valentín Iglesias
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barelona (UAB), Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barelona (UAB), Barcelona, Spain
| | - Aleksander Kuriata
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barelona (UAB), Barcelona, Spain.
| |
Collapse
|
9
|
See K, Kadonosono T, Miyamoto K, Tsubaki T, Ota Y, Katsumi M, Ryo S, Aida K, Minegishi M, Isozaki T, Kuchimaru T, Kizaka-Kondoh S. Antibody-guided design and identification of CD25-binding small antibody mimetics using mammalian cell surface display. Sci Rep 2021; 11:22098. [PMID: 34764369 PMCID: PMC8585965 DOI: 10.1038/s41598-021-01603-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
Small antibody mimetics that contain high-affinity target-binding peptides can be lower cost alternatives to monoclonal antibodies (mAbs). We have recently developed a method to create small antibody mimetics called FLuctuation-regulated Affinity Proteins (FLAPs), which consist of a small protein scaffold with a structurally immobilized target-binding peptide. In this study, to further develop this method, we established a novel screening system for FLAPs called monoclonal antibody-guided peptide identification and engineering (MAGPIE), in which a mAb guides selection in two manners. First, antibody-guided design allows construction of a peptide library that is relatively small in size, but sufficient to identify high-affinity binders in a single selection round. Second, in antibody-guided screening, the fluorescently labeled mAb is used to select mammalian cells that display FLAP candidates with high affinity for the target using fluorescence-activated cell sorting. We demonstrate the reliability and efficacy of MAGPIE using daclizumab, a mAb against human interleukin-2 receptor alpha chain (CD25). Three FLAPs identified by MAGPIE bound CD25 with dissociation constants of approximately 30 nM as measured by biolayer interferometry without undergoing affinity maturation. MAGPIE can be broadly adapted to any mAb to develop small antibody mimetics.
Collapse
Affiliation(s)
- Kyra See
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | - Kotaro Miyamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takuya Tsubaki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yumi Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Marina Katsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Sumoe Ryo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kazuki Aida
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Misa Minegishi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tatsuhiro Isozaki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takahiro Kuchimaru
- Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| |
Collapse
|
10
|
Meric G, Naik S, Hunter AK, Robinson AS, Roberts CJ. Challenges for design of aggregation-resistant variants of granulocyte colony-stimulating factor. Biophys Chem 2021; 277:106630. [PMID: 34119805 DOI: 10.1016/j.bpc.2021.106630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023]
Abstract
Non-native protein aggregation is a long-standing issue in pharmaceutical biotechnology. A rational design approach was used in order to identify variants of recombinant human granulocyte colony-stimulating factor (rhG-CSF) with lower aggregation propensity at solution conditions that are typical of commercial formulation. The approach used aggregation-prone-region (APR) predictors to select single amino acid substitutions that were predicted to decrease intrinsic aggregation propensity (IAP). The results of static light scattering temperature-ramps and chemical unfolding experiments demonstrated that none of the selected variants exhibited improved aggregation resistance, and the apparent conformational stability of each variant was lower than that of WT. Aggregation studies under partly denaturing conditions suggested that the IAP of at least one variant remained unaltered. Overall, this study highlights a general challenge in designing aggregation resistance for proteins, due to the need to accurately predict both APRs and conformational stability.
Collapse
Affiliation(s)
- Gulsum Meric
- Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States.
| | - Subhashchandra Naik
- Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States.
| | - Alan K Hunter
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD 20878, United States.
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| | - Christopher J Roberts
- Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
11
|
Abstract
Protein aggregation is a widespread phenomenon with important implications in many scientific areas. Although amyloid formation is typically considered as detrimental, functional amyloids that perform physiological roles have been identified in all kingdoms of life. Despite their functional and pathological relevance, the structural details of the majority of molecular species involved in the amyloidogenic process remains elusive. Here, we explore the application of AlphaFold, a highly accurate protein structure predictor, in the field of protein aggregation. While we envision a straightforward application of AlphaFold in assisting the design of globular proteins with improved solubility for biomedical and industrial purposes, the use of this algorithm for predicting the structure of aggregated species seems far from trivial. First, in amyloid diseases, the presence of multiple amyloid polymorphs and the heterogeneity of aggregation intermediates challenges the "one sequence, one structure" paradigm, inherent to sequence-based predictions. Second, aberrant aggregation is not the subject of positive selective pressure, precluding the use of evolutionary-based approaches, which are the core of the AlphaFold pipeline. Instead, amyloid polymorphism seems to be constrained by the need for a defined structure-activity relationship in functional amyloids. They may thus provide a starting point for the application of AlphaFold in the amyloid landscape.
Collapse
|
12
|
Saumya KU, Gadhave K, Kumar A, Giri R. Zika virus capsid anchor forms cytotoxic amyloid-like fibrils. Virology 2021; 560:8-16. [PMID: 34020329 DOI: 10.1016/j.virol.2021.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Capsid-anchor (CA) of Zika virus (ZIKV) is a small, single-pass transmembrane sequence that separates the capsid (C) protein from downstream pre-membrane (PrM) protein. During polyprotein processing, CA is cleaved-off from C and PrM and left as a membrane-embedded peptide. CA plays an essential role in the assembly and maturation of the virus. However, its independent folding behavior is still unknown. Therefore, in this study, we investigated the amyloid-forming propensity of CA at physiological conditions. We observed the aggregation behavior of CA peptide using dye-binding assays and ThT kinetics. The morphological analysis of CA aggregates explored by high-resolution microscopy (TEM, AFM) and Far-UV CD spectroscopy revealed characteristic amyloid-like fibrils rich in β-sheet secondary structure. Further, the effect on mammalian cells exhibited the cytotoxic nature of the CA amyloid-fibrils. Our findings collectively shed light on the amyloidogenic phenomenon of flaviviral protein, which may contribute to their infection.
Collapse
Affiliation(s)
- Kumar Udit Saumya
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh, 175005, India
| | - Kundlik Gadhave
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh, 175005, India
| | - Amit Kumar
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh, 175005, India
| | - Rajanish Giri
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
13
|
Venko K, Novič M, Stoka V, Žerovnik E. Prediction of Transmembrane Regions, Cholesterol, and Ganglioside Binding Sites in Amyloid-Forming Proteins Indicate Potential for Amyloid Pore Formation. Front Mol Neurosci 2021; 14:619496. [PMID: 33642992 PMCID: PMC7902868 DOI: 10.3389/fnmol.2021.619496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Besides amyloid fibrils, amyloid pores (APs) represent another mechanism of amyloid induced toxicity. Since hypothesis put forward by Arispe and collegues in 1993 that amyloid-beta makes ion-conducting channels and that Alzheimer's disease may be due to the toxic effect of these channels, many studies have confirmed that APs are formed by prefibrillar oligomers of amyloidogenic proteins and are a common source of cytotoxicity. The mechanism of pore formation is still not well-understood and the structure and imaging of APs in living cells remains an open issue. To get closer to understand AP formation we used predictive methods to assess the propensity of a set of 30 amyloid-forming proteins (AFPs) to form transmembrane channels. A range of amino-acid sequence tools were applied to predict AP domains of AFPs, and provided context on future experiments that are needed in order to contribute toward a deeper understanding of amyloid toxicity. In a set of 30 AFPs we predicted their amyloidogenic propensity, presence of transmembrane (TM) regions, and cholesterol (CBM) and ganglioside binding motifs (GBM), to which the oligomers likely bind. Noteworthy, all pathological AFPs share the presence of TM, CBM, and GBM regions, whereas the functional amyloids seem to show just one of these regions. For comparative purposes, we also analyzed a few examples of amyloid proteins that behave as biologically non-relevant AFPs. Based on the known experimental data on the β-amyloid and α-synuclein pore formation, we suggest that many AFPs have the potential for pore formation. Oligomerization and α-TM helix to β-TM strands transition on lipid rafts seem to be the common key events.
Collapse
Affiliation(s)
- Katja Venko
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjana Novič
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
14
|
Martins PM, Navarro S, Silva A, Pinto MF, Sárkány Z, Figueiredo F, Pereira PJB, Pinheiro F, Bednarikova Z, Burdukiewicz M, Galzitskaya OV, Gazova Z, Gomes CM, Pastore A, Serpell LC, Skrabana R, Smirnovas V, Ziaunys M, Otzen DE, Ventura S, Macedo-Ribeiro S. MIRRAGGE - Minimum Information Required for Reproducible AGGregation Experiments. Front Mol Neurosci 2020; 13:582488. [PMID: 33328883 PMCID: PMC7729192 DOI: 10.3389/fnmol.2020.582488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.
Collapse
Affiliation(s)
- Pedro M Martins
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alexandra Silva
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria F Pinto
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Zsuzsa Sárkány
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory - Department of Atomic Structure - Composition of Materials, Braga, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Michał Burdukiewicz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Annalisa Pastore
- UK-DRI Centre at King's College London, the Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Rostislav Skrabana
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Lobo SA, Bączyk P, Wyss B, Widmer JC, Jesus LP, Gomes J, Batista AP, Hartmann S, Wassmann P. Stability liabilities of biotherapeutic proteins: Early assessment as mitigation strategy. J Pharm Biomed Anal 2020; 192:113650. [PMID: 33065403 DOI: 10.1016/j.jpba.2020.113650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Identification of molecular liabilities and implementation of mitigation strategies are key aspects that need to be considered by pharmaceutical companies developing therapeutic proteins. In the field of monoclonal antibodies, an efficient and streamlined process known as developability assessment is used for the selection of the "fittest" candidate. Other protein modalities, have in most cases only a limited number of possible candidates, requiring a paradigm change to a concept of candidate enabling. The assessment of liabilities at early project phases with the possibility to re-engineer candidates becomes essential for the success of these projects. Each protein possesses a unique stability profile resulting from the interplay of conformational, colloidal, chemical and physical stability attributes. All of these attributes strongly depend on external factors. Conformational and colloidal stability profiles of three non-immunoglobulin domain based proteins, namely Carbonic anhydrase, Ovalbumin and Thyroglobulin, and of two monoclonal antibodies were assessed in dependence of solution pH, ionic strength and varying buffering agents. The impact of screened external factors on proteins' stability attributes varied significantly, indicating presence of molecule specific liabilities. Screening of such a broad space of conditions at early project phases is only feasible using low-material consuming, high-throughput analytical methods as exemplified in this study.
Collapse
Affiliation(s)
- Susana A Lobo
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | | | | | | | - Lídia P Jesus
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Joana Gomes
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana P Batista
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | | | | |
Collapse
|
16
|
Rawat P, Prabakaran R, Kumar S, Gromiha MM. AggreRATE-Pred: a mathematical model for the prediction of change in aggregation rate upon point mutation. Bioinformatics 2020; 36:1439-1444. [PMID: 31599925 DOI: 10.1093/bioinformatics/btz764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 01/09/2023] Open
Abstract
MOTIVATION Protein aggregation is a major unsolved problem in biochemistry with implications for several human diseases, biotechnology and biomaterial sciences. A majority of sequence-structural properties known for their mechanistic roles in protein aggregation do not correlate well with the aggregation kinetics. This limits the practical utility of predictive algorithms. RESULTS We analyzed experimental data on 183 unique single point mutations that lead to change in aggregation rates for 23 polypeptides and proteins. Our initial mathematical model obtained a correlation coefficient of 0.43 between predicted and experimental change in aggregation rate upon mutation (P-value <0.0001). However, when the dataset was classified based on protein length and conformation at the mutation sites, the average correlation coefficient almost doubled to 0.82 (range: 0.74-0.87; P-value <0.0001). We observed that distinct sequence and structure-based properties determine protein aggregation kinetics in each class. In conclusion, the protein aggregation kinetics are impacted by local factors and not by global ones, such as overall three-dimensional protein fold, or mechanistic factors such as the presence of aggregation-prone regions. AVAILABILITY AND IMPLEMENTATION The web server is available at http://www.iitm.ac.in/bioinfo/aggrerate-pred/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Puneet Rawat
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - R Prabakaran
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer-Ingelheim Pharmaceutical Inc. Ridgefield, CT, USA
| | - M Michael Gromiha
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.,Advanced Computational Drug Discovery Unit (ACDD), Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| |
Collapse
|
17
|
Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. Int J Mol Sci 2020; 21:ijms21176208. [PMID: 32867340 PMCID: PMC7503639 DOI: 10.3390/ijms21176208] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/20/2022] Open
Abstract
The abundance of intrinsic disorder in the protein realm and its role in a variety of physiological and pathological cellular events have strengthened the interest of the scientific community in understanding the structural and dynamical properties of intrinsically disordered proteins (IDPs) and regions (IDRs). Attempts at rationalizing the general principles underlying both conformational properties and transitions of IDPs/IDRs must consider the abundance of charged residues (Asp, Glu, Lys, and Arg) that typifies these proteins, rendering them assimilable to polyampholytes or polyelectrolytes. Their conformation strongly depends on both the charge density and distribution along the sequence (i.e., charge decoration) as highlighted by recent experimental and theoretical studies that have introduced novel descriptors. Published experimental data are revisited herein in the frame of this formalism, in a new and possibly unitary perspective. The physicochemical properties most directly affected by charge density and distribution are compaction and solubility, which can be described in a relatively simplified way by tools of polymer physics. Dissecting factors controlling such properties could contribute to better understanding complex biological phenomena, such as fibrillation and phase separation. Furthermore, this knowledge is expected to have enormous practical implications for the design, synthesis, and exploitation of bio-derived materials and the control of natural biological processes.
Collapse
|
18
|
Computational prediction of protein aggregation: Advances in proteomics, conformation-specific algorithms and biotechnological applications. Comput Struct Biotechnol J 2020; 18:1403-1413. [PMID: 32637039 PMCID: PMC7322485 DOI: 10.1016/j.csbj.2020.05.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Protein aggregation is a widespread phenomenon that stems from the establishment of non-native intermolecular contacts resulting in protein precipitation. Despite its deleterious impact on fitness, protein aggregation is a generic property of polypeptide chains, indissociable from protein structure and function. Protein aggregation is behind the onset of neurodegenerative disorders and one of the serious obstacles in the production of protein-based therapeutics. The development of computational tools opened a new avenue to rationalize this phenomenon, enabling prediction of the aggregation propensity of individual proteins as well as proteome-wide analysis. These studies spotted aggregation as a major force driving protein evolution. Actual algorithms work on both protein sequences and structures, some of them accounting also for conformational fluctuations around the native state and the protein microenvironment. This toolbox allows to delineate conformation-specific routines to assist in the identification of aggregation-prone regions and to guide the optimization of more soluble and stable biotherapeutics. Here we review how the advent of predictive tools has change the way we think and address protein aggregation.
Collapse
|
19
|
Kuriata A, Iglesias V, Pujols J, Kurcinski M, Kmiecik S, Ventura S. Aggrescan3D (A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Res 2020; 47:W300-W307. [PMID: 31049593 PMCID: PMC6602499 DOI: 10.1093/nar/gkz321] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/29/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022] Open
Abstract
Protein aggregation is a hallmark of a growing number of human disorders and constitutes a major bottleneck in the manufacturing of therapeutic proteins. Therefore, there is a strong need of in-silico methods that can anticipate the aggregative properties of protein variants linked to disease and assist the engineering of soluble protein-based drugs. A few years ago, we developed a method for structure-based prediction of aggregation properties that takes into account the dynamic fluctuations of proteins. The method has been made available as the Aggrescan3D (A3D) web server and applied in numerous studies of protein structure-aggregation relationship. Here, we present a major update of the A3D web server to version 2.0. The new features include: extension of dynamic calculations to significantly larger and multimeric proteins, simultaneous prediction of changes in protein solubility and stability upon mutation, rapid screening for functional protein variants with improved solubility, a REST-ful service to incorporate A3D calculations in automatic pipelines, and a new, enhanced web server interface. A3D 2.0 is freely available at: http://biocomp.chem.uw.edu.pl/A3D2/
Collapse
Affiliation(s)
- Aleksander Kuriata
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Valentin Iglesias
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica I Biologia Molecular Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica I Biologia Molecular Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mateusz Kurcinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica I Biologia Molecular Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
20
|
Santos J, Iglesias V, Santos-Suárez J, Mangiagalli M, Brocca S, Pallarès I, Ventura S. pH-Dependent Aggregation in Intrinsically Disordered Proteins Is Determined by Charge and Lipophilicity. Cells 2020; 9:E145. [PMID: 31936201 PMCID: PMC7017033 DOI: 10.3390/cells9010145] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022] Open
Abstract
Protein aggregation is associated with an increasing number of human disorders and premature aging. Moreover, it is a central concern in the manufacturing of recombinant proteins for biotechnological and therapeutic applications. Nevertheless, the unique architecture of protein aggregates is also exploited by nature for functional purposes, from bacteria to humans. The relevance of this process in health and disease has boosted the interest in understanding and controlling aggregation, with the concomitant development of a myriad of algorithms aimed to predict aggregation propensities. However, most of these programs are blind to the protein environment and, in particular, to the influence of the pH. Here, we developed an empirical equation to model the pH-dependent aggregation of intrinsically disordered proteins (IDPs) based on the assumption that both the global protein charge and lipophilicity depend on the solution pH. Upon its parametrization with a model IDP, this simple phenomenological approach showed unprecedented accuracy in predicting the dependence of the aggregation of both pathogenic and functional amyloidogenic IDPs on the pH. The algorithm might be useful for diverse applications, from large-scale analysis of IDPs aggregation properties to the design of novel reversible nanofibrillar materials.
Collapse
Affiliation(s)
- Jaime Santos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (J.S.); (V.I.); (I.P.)
| | - Valentín Iglesias
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (J.S.); (V.I.); (I.P.)
| | - Juan Santos-Suárez
- Galicia Supercomputing Center (CESGA), 15705 Santiago de Compostela, A Coruña, Spain;
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (M.M.); (S.B.)
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (M.M.); (S.B.)
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (J.S.); (V.I.); (I.P.)
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (J.S.); (V.I.); (I.P.)
| |
Collapse
|
21
|
Computational prediction and redesign of aberrant protein oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:43-83. [DOI: 10.1016/bs.pmbts.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Affiliation(s)
- Nevena Veljkovic
- Laboratory for Bioinformatics and Computational Chemistry Vinča Institute of Nuclear Sciences University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
The CDR1 and Other Regions of Immunoglobulin Light Chains are Hot Spots for Amyloid Aggregation. Sci Rep 2019; 9:3123. [PMID: 30816248 PMCID: PMC6395779 DOI: 10.1038/s41598-019-39781-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Immunoglobulin light chain-derived (AL) amyloidosis is a debilitating disease without known cure. Almost nothing is known about the structural factors driving the amyloidogenesis of the light chains. This study aimed to identify the fibrillogenic hotspots of the model protein 6aJL2 and in pursuing this goal, two complementary approaches were applied. One of them was based on several web-based computational tools optimized to predict fibrillogenic/aggregation-prone sequences based on different structural and biophysical properties of the polypeptide chain. Then, the predictions were confirmed with an ad-hoc synthetic peptide library. In the second approach, 6aJL2 protein was proteolyzed with trypsin, and the products incubated in aggregation-promoting conditions. Then, the aggregation-prone fragments were identified by combining standard proteomic methods, and the results validated with a set of synthetic peptides with the sequence of the tryptic fragments. Both strategies coincided to identify a fibrillogenic hotspot located at the CDR1 and β-strand C of the protein, which was confirmed by scanning proline mutagenesis analysis. However, only the proteolysis-based strategy revealed additional fibrillogenic hotspots in two other regions of the protein. It was shown that a fibrillogenic hotspot associated to the CDR1 is also encoded by several κ and λ germline variable domain gene segments. Some parts of this study have been included in the chapter “The Structural Determinants of the Immunoglobulin Light Chain Amyloid Aggregation”, published in Physical Biology of Proteins and Peptides, Springer 2015 (ISBN 978-3-319-21687-4).
Collapse
|
24
|
Galzitskaya OV, Lobanov MY. Proteome-scale understanding of relationship between homo-repeat enrichments and protein aggregation properties. PLoS One 2018; 13:e0206941. [PMID: 30399196 PMCID: PMC6219797 DOI: 10.1371/journal.pone.0206941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023] Open
Abstract
Expansion of homo-repeats is a molecular basis for human neurological diseases. We are the first who studied the influence of homo-repeats with lengths larger than four amino acid residues on the aggregation properties of 1449683 proteins across 122 eukaryotic and bacterial proteomes. Only 15% of proteins (215481) include homo-repeats of such length. We demonstrated that RNA-binding proteins with a prion-like domain are enriched with homo-repeats in comparison with other non-redundant protein sequences and those in the PDB. We performed a bioinformatics analysis for these proteins and found that proteins with homo-repeats are on average two times longer than those in the whole database. Moreover, we are first to discover that as a rule, homo-repeats appear in proteins not alone but in pairs: hydrophobic and aromatic homo-repeats appear with similar ones, while homo-repeats with small, polar and charged amino acids appear together with different preferences. We elaborated a new complementary approach to demonstrate the influence of homo-repeats on their host protein aggregation properties. We have shown that addition of artificial homo-repeats to natural and random proteins results in intensification of aggregation properties of the proteins. The maximal effect is observed for the insertion of artificial homo-repeats with 5–6 residues, which is consistent with the minimal length of an amyloidogenic region. We have also demonstrated that the ability of proteins with homo-repeats to aggregate cannot be explained only by the presence of long homo-repeats in them. There should be other characteristics of proteins intensifying the aggregation property including such as the appearance of homo-repeats in pairs in the same protein. We are the first who elaborated a new approach to study the influence of homo-repeats present in proteins on their aggregation properties and performed an appropriate analysis of the large number of proteomes and proteins.
Collapse
Affiliation(s)
- Oxana V. Galzitskaya
- Group of Bioinformatics, Institute of Protein Research, Russian Academy of Science, Pushchino, Moscow Region, Russia
- * E-mail:
| | - Miсhail Yu. Lobanov
- Group of Bioinformatics, Institute of Protein Research, Russian Academy of Science, Pushchino, Moscow Region, Russia
| |
Collapse
|
25
|
Guidelines to reach high-quality purified recombinant proteins. Appl Microbiol Biotechnol 2017; 102:81-92. [DOI: 10.1007/s00253-017-8623-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|