1
|
Ferreira AL, Menezes A, Sandim V, Queiroz Monteiro RD, Nogueira FCS, Evaristo JAM, Abreu Pereira DD, Carneiro K. Histone deacetylase inhibition disrupts the molecular signature of the glioblastoma secretome related to extracellular vesicle-associated proteins and targets RAB7a and RAB14 in vitro. Biochem Biophys Res Commun 2024; 736:150847. [PMID: 39454304 DOI: 10.1016/j.bbrc.2024.150847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor with a poor prognosis. While Histone Deacetylase inhibitors have shown promising results in inhibiting cancer cell invasion and promoting apoptosis, their effects on GBM secretion, specifically focusing on extracellular vesicles (EVs) secretion, remain largely unexplored. Using label-free NANOLC-MS/MS methodology, we identified significant changes in the abundance of membrane traffic regulatory proteins in the secretome of U87MG cells after the treatment with the HDAC inhibitor Trichostatin A (TSA). In silico analysis showed that TSA treatment disrupted the secretion pattern of EVs-associated proteins and cellular signaling pathways, both qualitatively and quantitatively. Notably, RAB14/RAB7a interaction was only observed in the secretome of cells treated with TSA. In vitro assays revealed that TSA treatment of glioma cells increased EVs secretion and intracellular protein levels of RAB7a and RAB14 without affecting gene expression, suggesting a role of these two EVs-associated proteins in grade IV glioma cells. Additionally, an integrative approach using clinical data highlighted a correlation between DNA mutations affecting vesicle traffic coding-genes and clinical and phenotypic outcomes in glioma patients. These findings provide insights into the interplay between epigenetics and GBM intracellular trafficking, potentially leading to improved strategies for targeting and modifying the complex signaling network established between GBM cells and the tumor cell microenvironment.
Collapse
Affiliation(s)
- Ana Luiza Ferreira
- Instituto de Ciências Biomédicas e Programa de Pós-graduação Em Medicina (Anatomia Patológica), UFRJ/RJ, Brazil.
| | - Aline Menezes
- Instituto de Ciências Biomédicas e Programa de Pós-graduação Em Medicina (Anatomia Patológica), UFRJ/RJ, Brazil.
| | - Vanessa Sandim
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, UFRJ/RJ, Brazil.
| | - Robson de Queiroz Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, UFRJ/RJ, Brazil.
| | - Fábio César Sousa Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Laboratory of Proteomics (LabProt), LADETEC, Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, UFRJ/RJ, Brazil.
| | | | - Denise de Abreu Pereira
- Programa de Oncobiologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional Do Câncer, INCA/RJ, Brazil.
| | - Katia Carneiro
- Instituto de Ciências Biomédicas e Programa de Pós-graduação Em Medicina (Anatomia Patológica), UFRJ/RJ, Brazil.
| |
Collapse
|
2
|
Poonia P, Sharma M, Jha P, Chopra M. Pharmacophore-based virtual screening of ZINC database, molecular modeling and designing new derivatives as potential HDAC6 inhibitors. Mol Divers 2023; 27:2053-2071. [PMID: 36214962 DOI: 10.1007/s11030-022-10540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
Abstract
To date, many HDAC6 inhibitors have been identified and developed but none is clinically approved as of now. Through this study, we aim to obtain novel HDAC6 selective inhibitors and provide new insights into the detailed structural design of potential HDAC6 inhibitors. A HypoGen-based 3D QSAR HDAC6 pharmacophore was built and used as a query model to screen approximately 8 million ZINC database compounds. First, the ZINC Database was filtered using ADMET, followed by pharmacophore-based library screening. Using fit value and estimated activity cutoffs, a final set of 54 ZINC hits was obtained that were further investigated using molecular docking with the crystal structure of human histone deacetylase 6 catalytic domain 2 in complex with Trichostatin A (PDB ID: 5EDU). Through detailed in silico screening of the ZINC database, we shortlisted three hits as the lead molecules for designing novel HDAC6 inhibitors with better efficacy. Docking with 5EDU, followed by ADMET and TOPKAT analysis of modified ZINC hits provided 9 novel potential HDAC6 inhibitors that possess better docking scores and 2D interactions as compared to the control ZINC hit molecules. Finally, a 50 ns MD analysis run followed by Protein-Ligand Interaction Energy (PLIE) analysis of the top scored hits provided a novel molecule N1 that showed promisingly similar results to that of Ricolinostat (a known HDAC6 inhibitor). The comparable result of the designed hits to established HDAC6 inhibitors suggests that these compounds might prove to be successful HDAC6 inhibitors in future. Designed novel hits that might act as good HDAC6 inhibitors derived from ZINC database using combined molecular docking and modeling approaches.
Collapse
Affiliation(s)
- Priya Poonia
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Monika Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Prakash Jha
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Madhu Chopra
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India.
| |
Collapse
|
3
|
Zhang X, Ma L, Wang J. Cross-Regulation Between Redox and Epigenetic Systems in Tumorigenesis: Molecular Mechanisms and Clinical Applications. Antioxid Redox Signal 2023; 39:445-471. [PMID: 37265163 DOI: 10.1089/ars.2023.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Significance: Redox and epigenetics are two important regulatory processes of cell physiological functions. The cross-regulation between these processes has critical effects on the occurrence and development of various types of tumors. Recent Advances: The core factor that influences redox balance is reactive oxygen species (ROS) generation. The ROS functions as a double-edged sword in tumors: Low levels of ROS promote tumors, whereas excessive ROS induces various forms of tumor cell death, including apoptosis and ferroptosis as well as necroptosis and pyroptosis. Many studies have shown that the redox balance is influenced by epigenetic mechanisms such as DNA methylation, histone modification, chromatin remodeling, non-coding RNAs (microRNA, long non-coding RNA, and circular RNA), and RNA N6-methyladenosine modification. Several oxidizing or reducing substances also affect the epigenetic state. Critical Issues: In this review, we summarize research on the cross-regulation between redox and epigenetics in cancer and discuss the relevant molecular mechanisms. We also discuss the current research on the clinical applications. Future Directions: Future research can use high-throughput methods to analyze the molecular mechanisms of the cross-regulation between redox and epigenetics using both in vitro and in vivo models in more detail, elucidate regulatory mechanisms, and provide guidance for clinical treatment. Antioxid. Redox Signal. 39, 445-471.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Lifang Ma
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jiayi Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
4
|
Sahafnejad Z, Ramazi S, Allahverdi A. An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes (Basel) 2023; 14:genes14040873. [PMID: 37107631 PMCID: PMC10137918 DOI: 10.3390/genes14040873] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Epigenetics has long been recognized as a significant field in biology and is defined as the investigation of any alteration in gene expression patterns that is not attributed to changes in the DNA sequences. Epigenetic marks, including histone modifications, non-coding RNAs, and DNA methylation, play crucial roles in gene regulation. Numerous studies in humans have been carried out on single-nucleotide resolution of DNA methylation, the CpG island, new histone modifications, and genome-wide nucleosome positioning. These studies indicate that epigenetic mutations and aberrant placement of these epigenetic marks play a critical role in causing the disease. Consequently, significant development has occurred in biomedical research in identifying epigenetic mechanisms, their interactions, and changes in health and disease conditions. The purpose of this review article is to provide comprehensive information about the different types of diseases caused by alterations in epigenetic factors such as DNA methylation and histone acetylation or methylation. Recent studies reported that epigenetics could influence the evolution of human cancer via aberrant methylation of gene promoter regions, which is associated with reduced gene function. Furthermore, DNA methyltransferases (DNMTs) in the DNA methylation process as well as histone acetyltransferases (HATs)/histone deacetylases (HDACs) and histone methyltransferases (HMTs)/demethylases (HDMs) in histone modifications play important roles both in the catalysis and inhibition of target gene transcription and in many other DNA processes such as repair, replication, and recombination. Dysfunction in these enzymes leads to epigenetic disorders and, as a result, various diseases such as cancers and brain diseases. Consequently, the knowledge of how to modify aberrant DNA methylation as well as aberrant histone acetylation or methylation via inhibitors by using epigenetic drugs can be a suitable therapeutic approach for a number of diseases. Using the synergistic effects of DNA methylation and histone modification inhibitors, it is hoped that many epigenetic defects will be treated in the future. Numerous studies have demonstrated a link between epigenetic marks and their effects on brain and cancer diseases. Designing appropriate drugs could provide novel strategies for the management of these diseases in the near future.
Collapse
Affiliation(s)
- Zahra Sahafnejad
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| |
Collapse
|
5
|
Enhanced Cytotoxic Effects in Human Oral Squamous Cell Carcinoma Cells Treated with Combined Methyltransferase Inhibitors and Histone Deacetylase Inhibitors. Biomedicines 2022; 10:biomedicines10040763. [PMID: 35453513 PMCID: PMC9029187 DOI: 10.3390/biomedicines10040763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Combined treatment of human oral squamous cell carcinoma (OSCCs) with DNA methyltransferase inhibitors (DNMTis), histone methyltransferase inhibitors (HMTis), and histone deacetylase inhibitors (HDACis), and the molecular mechanisms underlying their anticancer effects, have not been fully elucidated. Herein, we investigated the cytotoxic effects of combined DNMTis (5-Aza-deoxycytidine: 5-Aza-dC, RG108), HMTis (3-deazaneplanocin A: DZNep), and HDACis (trichostatin A: TSA) treatment on human OSCC cells and explored their molecular mechanisms. Combined 5-Aza-dC, or RG108, and TSA treatment significantly decreased HSC-2 and Ca9-22 cell viability. Combinatorial DZNep and TSA treatment also decreased Ca9-22 cell viability. Although caspase 3/7 activation was not observed in HSC-2 cells following combined treatment, caspase activity was significantly increased in Ca9-22 cells treated with DZNep and TSA. Moreover, combined treatment with 5-Aza-dC, RG108, and TSA increased the proportion of HSC-2 and Ca9-22 cells in the S and G2/M phases. Meanwhile, increased phosphorylation of the histone variant H2A.X, a marker of double-stranded DNA breaks, was observed in both cells after combination treatment. Hence, the decreased viability induced by combined treatment with epigenomic inhibitors results from apoptosis and cell cycle arrest in S and G2/M phases. Thus, epigenomic therapy comprising combined low concentrations of DNMTi, HMTi, and HDACi is effective against OSCC.
Collapse
|
6
|
Deng T, Xiao Y, Dai Y, Xie L, Li X. Roles of Key Epigenetic Regulators in the Gene Transcription and Progression of Prostate Cancer. Front Mol Biosci 2021; 8:743376. [PMID: 34977151 PMCID: PMC8714908 DOI: 10.3389/fmolb.2021.743376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a top-incidence malignancy, and the second most common cause of death amongst American men and the fifth leading cause of cancer death in men around the world. Androgen receptor (AR), the key transcription factor, is critical for the progression of PCa by regulating a series of target genes by androgen stimulation. A number of co-regulators of AR, including co-activators or co-repressors, have been implicated in AR-mediated gene transcription and PCa progression. Epigenetic regulators, by modifying chromatin integrity and accessibility for transcription regulation without altering DNA sequences, influence the transcriptional activity of AR and further regulate the gene expression of AR target genes in determining cell fate, PCa progression and therapeutic response. In this review, we summarized the structural interaction of AR and epigenetic regulators including histone or DNA methylation, histone acetylation or non-coding RNA, and functional synergy in PCa progression. Importantly, epigenetic regulators have been validated as diagnostic markers and therapeutic targets. A series of epigenetic target drugs have been developed, and have demonstrated the potential to treat PCa alone or in combination with antiandrogens.
Collapse
Affiliation(s)
- Tanggang Deng
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yugang Xiao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Dai
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Xie
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiong Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Emfietzoglou R, Pachymanolis E, Piperi C. Impact of Epigenetic Alterations in the Development of Oral Diseases. Curr Med Chem 2021; 28:1091-1103. [PMID: 31942842 DOI: 10.2174/0929867327666200114114802] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epigenetic mechanisms alter gene expression and regulate vital cellular processes that contribute to the onset and progression of major dental diseases. Their reversible character may prove beneficial for therapeutic targeting. This review aims to provide an update on the main epigenetic changes that contribute to the pathogenesis of Oral Squamous Cell Carcinoma (OSCC), pulpitis and periodontitis as well as dental caries and congenital orofacial malformations, in an effort to identify potential therapeutic targets. METHODS We undertook a structured search of bibliographic databases (PubMed and MEDLINE) for peer-reviewed epigenetic research studies focused on oral diseases in the last ten years. A qualitative content analysis was performed in screened papers and a critical discussion of main findings is provided. RESULTS Several epigenetic modifications have been associated with OSCC pathogenesis, including promoter methylation of genes involved in DNA repair, cell cycle regulation and proliferation leading to malignant transformation. Additionally, epigenetic inactivation of tumor suppressor genes, overexpression of histone chaperones and several microRNAs are implicated in OSCC aggressiveness. Changes in the methylation patterns of IFN-γ and trimethylation of histone Η3Κ27 have been detected in pulpitis, along with an aberrant expression of several microRNAs, mainly affecting cytokine production. Chronic periodontal disease has been associated with modifications in the methylation patterns of Toll-Like Receptor 2, Prostaglandin synthase 2, E-cadherin and some inflammatory cytokines, along with the overexpression of miR-146a and miR155. Furthermore, DNA methylation was found to regulate amelogenesis and has been implicated in the pathogenesis of dental caries as well as in several congenital orofacial malformations. CONCLUSION Strong evidence indicates that epigenetic changes participate in the pathogenesis of oral diseases and epigenetic targeting may be considered as a complementary therapeutic scheme to the current management of oral health.
Collapse
Affiliation(s)
- Rodopi Emfietzoglou
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Evangelos Pachymanolis
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias street, 115 27 Athens, Greece
| |
Collapse
|
8
|
Amintas S, Vendrely V, Dupin C, Buscail L, Laurent C, Bournet B, Merlio JP, Bedel A, Moreau-Gaudry F, Boutin J, Dabernat S, Buscail E. Next-Generation Cancer Biomarkers: Extracellular Vesicle DNA as a Circulating Surrogate of Tumor DNA. Front Cell Dev Biol 2021; 8:622048. [PMID: 33604335 PMCID: PMC7884755 DOI: 10.3389/fcell.2020.622048] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are produced by healthy tissues and tumor cells and are released in various bodily fluids, including blood. They are limited by bilayer phospholipidic membranes, and they carry a rich content in biomolecules. Their release cleanses the cells of their waste or serves as functional local and distant cell-cell communication and molecular exchange particles. This rich and heterogeneous content has been given intense attention in cancer physiopathology because EVs support cancer control and progression. Because of their specific active cargo, they are being evaluated as carriers of liquid biopsy biomarkers. Compared to soluble circulating biomarkers, their complexity might provide rich information on tumor and metastases status. Thanks to the acquired genomic changes commonly observed in oncogenic processes, double-stranded DNA (dsDNA) in EVs might be the latest most promising biomarker of tumor presence and complexity. This review will focus on the recent knowledge on the DNA inclusion in vesicles, the technical aspects of EV-DNA detection and quantification, and the use of EV-DNA as a clinical biomarker.
Collapse
Affiliation(s)
- Samuel Amintas
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Véronique Vendrely
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Charles Dupin
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Louis Buscail
- Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
- INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France
| | - Christophe Laurent
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Barbara Bournet
- Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Jean-Philippe Merlio
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
- INSERM U1053, Bordeaux, France
| | - Aurélie Bedel
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - François Moreau-Gaudry
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Julian Boutin
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Sandrine Dabernat
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Etienne Buscail
- Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
- INSERM, UMR-1220, IRSD, University of Toulouse III, Toulouse, France
| |
Collapse
|
9
|
Kotwal A, Amere Subbarao S. Hsp90 regulates HDAC3-dependent gene transcription while HDAC3 regulates the functions of Hsp90. Cell Signal 2020; 76:109801. [DOI: 10.1016/j.cellsig.2020.109801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 01/03/2023]
|
10
|
Abstract
Cancer has traditionally been hailed a genetic disease, dictated by successive genetic aberrations which alter gene expression. Yet, recent advances in molecular sequencing technologies, enabling the characterisation of cancer patient phenotypes on a large scale, have highlighted epigenetic changes as a hallmark of cancer. Epigenetic modifications, including DNA methylation and demethylation and histone modifications, have been found to play a key role in the pathogenesis of a wide variety of cancers through the regulation of chromatin state, gene expression and other nuclear events. Targeting epigenetic aberrations offers remarkable promise as a potential anti-cancer therapy given the reversible nature of epigenetic changes. Hence, epigenetic therapy has emerged as a rapidly advancing field of cancer research. A plethora of epigenetic therapies which inhibit enzymes of post-translational histone modifications, so-called 'writers', 'erasers' and 'readers', have been developed, with several epigenetic inhibitor agents approved for use in routine clinical practice. Epigenetic therapeutics inhibit the methylation or demethylation and acetylation or deacetylation of DNA and histone proteins. Their targets include writers (DNA methyltransferases [DNMT], histone acetyltransferases [HAT] and histone deacetylases [HDAC]) and erasers (histone demethylases [HDM] and histone methylases [HMT]). With new epigenetic mechanisms increasingly being elucidated, a vast array of targets and therapeutics have been brought to the fore. This review discusses recent advances in cancer epigenetics with a focus on molecular targets and mechanisms of action of epigenetic cancer therapeutics.
Collapse
Affiliation(s)
- Christopher Hillyar
- Oncology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, GBR
| | - Kathrine S Rallis
- Oncology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, GBR
| | - Jajini Varghese
- Breast and Plastic Surgery, University College London Institute of Surgery and Interventional Science & Royal Free NHS Trust, London, GBR
| |
Collapse
|
11
|
Li Y, Li Z, Dong L, Tang M, Zhang P, Zhang C, Cao Z, Zhu Q, Chen Y, Wang H, Wang T, Lv D, Wang L, Zhao Y, Yang Y, Wang H, Zhang H, Roeder RG, Zhu WG. Histone H1 acetylation at lysine 85 regulates chromatin condensation and genome stability upon DNA damage. Nucleic Acids Res 2019; 46:7716-7730. [PMID: 29982688 PMCID: PMC6125638 DOI: 10.1093/nar/gky568] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Linker histone H1 has a key role in maintaining higher order chromatin structure and genome stability, but how H1 functions in these processes is elusive. Here, we report that acetylation of lysine 85 (K85) within the H1 globular domain is a critical post-translational modification that regulates chromatin organization. H1K85 is dynamically acetylated by the acetyltransferase PCAF in response to DNA damage, and this effect is counterbalanced by the histone deacetylase HDAC1. Notably, an acetylation-mimic mutation of H1K85 (H1K85Q) alters H1 binding to the nucleosome and leads to condensed chromatin as a result of increased H1 binding to core histones. In addition, H1K85 acetylation promotes heterochromatin protein 1 (HP1) recruitment to facilitate chromatin compaction. Consequently, H1K85 mutation leads to genomic instability and decreased cell survival upon DNA damage. Together, our data suggest a novel model whereby H1K85 acetylation regulates chromatin structure and preserves chromosome integrity upon DNA damage.
Collapse
Affiliation(s)
- Yinglu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Zhiming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Liping Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ping Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chaohua Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ziyang Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qian Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Yongcan Chen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Peking University-Tsinghua University Center for Life Sciences, Beijing 100871, China
| | - Hui Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Tianzhuo Wang
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Danyu Lv
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Lina Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Haiying Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Peking University-Tsinghua University Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
12
|
Zhu T, Guan J, Liu H, Zhou S. RMDB: An Integrated Database of Single-cytosine-resolution DNA Methylation in Oryza Sativa. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190211161717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Previous studies have revealed that DNA methylation plays a crucial role
in eukaryotic growth and development via involvement in the regulation of gene expression and
chromosomal instability. With the advancement of biotechnology, next-generation sequencing
(NGS) is emerging as a popular method to explore the functions of DNA methylation, and an
increasing number of genome-scale DNA methylation datasets have been published. Several DNA
methylation databases, including MethDB, NGSmethDB and MENT have been developed for
storing and analyzing the DNA methylation data. However, no public resource dedicated to DNA
methylation of Oryza sativa is available to date.
Methods & Results:
We built a comprehensive database (RMDB) for integration and analysis of
DNA methylation data of Oryza sativa. A couple of functional modules were developed to identify
the connections between DNA methylation and phenotypes. Moreover, rich graphical visualization
tools were employed to facilitate data presentation and interpretation.
Conclusion:
RMDB is an integrated database dedicated to rice DNA methylation. To the best of
our knowledge, this is the first integrated rice DNA methylation database. We believe that RMDB
will be helpful to understand the epigenetic mechanisms of Oryza sativa. RMDB is freely
available at http://admis.fudan.edu.cn/rmdb.
Collapse
Affiliation(s)
- Tiansheng Zhu
- Shanghai Key Lab of Intelligent Information Processing and School of Computer Science, Fudan University, Shanghai, China
| | - Jihong Guan
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
| | - Hui Liu
- Lab of Information Management, Changzhou University, Jiangsu 213164, China
| | - Shuigeng Zhou
- Shanghai Key Lab of Intelligent Information Processing and School of Computer Science, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Huang P. Activatable Theranostics. Curr Med Chem 2019; 26:1310. [DOI: 10.2174/092986732608190516092348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Peng Huang
- Director, Department of Molecular Imaging Chief, Laboratory of Evolutionary Theranostics (LET) Distinguished Professor, School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen, Guangdong 518060, China
| |
Collapse
|