1
|
Lamichhane G, Pandey J, Devkota HP. Bioactive Chemical Constituents and Pharmacological Activities of Ponciri Fructus. Molecules 2022; 28:255. [PMID: 36615447 PMCID: PMC9821892 DOI: 10.3390/molecules28010255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Ponciri Fructus is a crude drug obtained from the dried immature fruits of Poncirus trifoliata (L). Raf. (Syn. Citrus trifoliata L.). This study aims to compile and analyze the ethnomedicinal uses, bioactive constituents, and pharmacological activities of Ponciri Fructus. Various online bibliographic databases namely, SciFinder, PubMed, Google Scholar, and Web of Science were used for collecting information on traditional uses, biological activities, and bioactive constituents. Concerning ethnomedicinal uses, Ponciri Fructus is extensively used in traditional Korean, Chinese, and Kampo medicines to mitigate allergic reactions, inflammation, edema, digestive complications, respiratory problems, spleen-related problems, liver complications, neuronal pain, hyperlipidemia, rheumatoid arthritis, cardiovascular problems, hernia, sinusitis, and insomnia. Several studies have shown that Ponciri Fructus is a major source of diverse classes of bioactive compounds namely flavonoids, terpenoids, coumarins, phytosterols, and alkaloids. Several in vivo and in vitro pharmacological activity evaluations such as antidiabetic, anti-obesity, anti-inflammatory, antiallergic, antimelanogenic, gastroprotective, anticancer, and neuroprotective effects have been conducted from Ponciri Fructus. However, scientific investigations focusing on bioassay-guided isolation and identification of specific bioactive constituents are limited. Therefore, an in-depth scientific investigation of Ponciri Fructus focusing on bioassay-guided isolation, mechanism based pharmacological studies, pharmacokinetic studies, and evaluation of possible toxicities is necessary in the future.
Collapse
Affiliation(s)
- Gopal Lamichhane
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 570-749, Republic of Korea
| | - Jitendra Pandey
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| |
Collapse
|
2
|
Han L, Cheng Y, Zhang T, Zhou Q, Zhang W, Li Y, Li G. Targeted Metabolomics With a Chemometric Study of Oxygenated Heterocyclic Aglycones as a Tool for Preliminary Authenticity Assessment of Orange and Grapefruit Juices. Front Nutr 2022; 9:897982. [PMID: 35677541 PMCID: PMC9169518 DOI: 10.3389/fnut.2022.897982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Profiles of citrus juice oxygenated heterocyclic aglycones (OHAs), which are notable marker secondary metabolites, were used to assess the authenticity of sweet orange and grapefruit juices in situations where mandarin and pomelo juices might be adulterants. Thirty-nine known OHAs, including 10 methoxyflavones, 13 coumarins, and 16 furanocoumarins, as well as 13 tentatively screened OHAs, were analyzed in orange, mandarin, grapefruit and pomelo juices using our newly developed high-resolution HPLC-UV and fluorescence detection method. Quantitative OHA profiles from 158 pure juice samples were obtained to establish a purity discriminant model using an omics strategy. Reduction of OHA variables showed that three important methoxyflavones, i.e. isosinensetin, tangeretin and sinensetin provided the best discrimination ability between sweet orange and mandarin juices. There are two subtypes of pomelos, Shatianyou Group and Wendan Group, of which juices should be separately compared to grapefruit juice. Five OHAs, namely meranzin, 3,5,6,7,8,3',4'-heptamethoxyflavone, osthole, 6',7'-epoxybergamottin, and bergamottin were found to discriminate Shatianyou Group of pomelo juice from grapefruit juice; whereas three OHAs, namely bergaptol, isomeranzin, and 6',7'-dihydroxybergamottin were able to discriminate Wendan Group of pomelo juice from grapefruit juice. The established partial least squares discriminant analysis (PLS-DA) models were capable of detecting as little as 10% mandarin juice in sweet orange juice and 10% pomelo juice in grapefruit juice, allowing for fast prescreening of excess addition with good reliability (root mean square error of prediction, RMSEP < 5%).
Collapse
Affiliation(s)
- Leng Han
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Yujiao Cheng
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Tenghui Zhang
- Chengdu Centre Testing International Group Co., Ltd., Chengdu, China
| | - Qi Zhou
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Wanchao Zhang
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - Yongan Li
- Administration of Agriculture and Rural Affairs of the Dongpo District, Meishan, China
| | - Guijie Li
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Gan X, Wu S, Geng F, Dong J, Zhou Y. Photocatalytic C–H alkylation of coumarins mediated by triphenylphosphine and sodium iodide. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
4
|
Comprehensive Characterization and Quantification of Antioxidant Compounds in Finger Lime (Citrus australasica L.) by HPLC-QTof-MS and UPLC-MS/MS. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Australian finger limes (Citrus australasica L.), an unusual citrus due to its unique pulp with a caviar-like appearance, has reached the global market as a promising source of bioactive compounds that promote health. This research was, therefore, performed to shed light on the bioactivity and composition of different parts of Citrus australasica L. (peel and pulp). Initial ultrasound-assisted extraction using MeOH:H2O (80:20, v/v) was carried out. After that, four fractions (hexane, ethyl acetate, butanol and water) were generated through liquid–liquid partitioning, and the total phenolic content (TPC) and antioxidant activity were evaluated using the Folin–Ciocalteu and the ferric reducing antioxidant power (FRAP) assays, respectively. The ethyl acetate fraction in the peel, which presented the highest values of TPC and antioxidant activity, was characterized using high-performance liquid chromatography coupled to quadrupole time-of-flight (HPLC-QTof) mass spectrometry. Fifteen compounds were identified, of which seven were characterized for the first time in this matrix. Moreover, ten phenolic compounds were quantified using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The major compounds in the sample were citric acid, pyrogallol, caffeic acid, coumarin, rutin, naringin, 2-coumaric acid, didymin, naringenin and isorhamnetin, which were found in a range from 2.7 to 8106.7 µg/g sample dry weight. Finally, the results presented in this novel work confirmed that the peel by-product of C. australasica L. is a potential source of bioactive compounds and could result in a positive outcome for the food, cosmetics and pharmaceutical industries.
Collapse
|
5
|
Comprehensive identification and distribution pattern of 37 oxygenated heterocyclic compounds in commercially important citrus juices. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Chaudhary D, Pramanik T, Santra S. Thiocoumarins and Dithiocoumarins: Advances in Synthesis and Pharmacological Activity. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200812132707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thiocoumarins and dithiocoumarins are two important classes of sulphurcontaining
heterocyclic compounds, which are bioisosteres of coumarins. Herein, various
synthetic strategies for these two classes of heterocyclic compounds reported in the literature
have been discussed. Different solvents, catalysts, reagents and reaction conditions,
which were employed successfully for synthesizing thiocoumarins and dithiocoumarins
have also been described concisely in this review. Mechanistic overview has been given
wherever it was necessary. In addition, a comparative view of various solvents, catalysts
and reagents focusing on their efficiency for synthesizing thiocoumarins and dithiocoumarins,
has been discussed as well. Furthermore, pharmacological activities of these two
classes of compounds have also been discussed.
Collapse
Affiliation(s)
- Diksha Chaudhary
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Tanay Pramanik
- Department of Chemistry, University of Engineering and Management, University Area, Action Area III, B/5, Newtown, Kolkata, West Bengal - 700160, India
| | - Soumava Santra
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
7
|
Maleki EH, Bahrami AR, Sadeghian H, Matin MM. Discovering the structure-activity relationships of different O-prenylated coumarin derivatives as effective anticancer agents in human cervical cancer cells. Toxicol In Vitro 2019; 63:104745. [PMID: 31830504 DOI: 10.1016/j.tiv.2019.104745] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
Cervical cancer remains one of the greatest life threatening diseases for women worldwide. Although chemotherapy is considered as a standard treatment for advanced cervical cancers, there are still some drawbacks in this procedure including side effects and acquired drug resistance, which necessitate further research on development of more effective agents with less side effects. Among natural compounds, coumarin derivatives have shown anticancer properties on various cancerous cells and coumarin ring has proven to have a paramount role in development of anticancer drugs. Here, we aimed to establish the structure-activity relationships of eighteen O-prenylated coumarin derivatives and determined their anticancer properties on HeLa cervical cancer and HDF normal cells by MTT assay. Moreover, the mechanism of cell death induced by these compounds and their effects on cell cycle were studied using flow cytometry. MTT results indicated that twelve O-prenylated coumarin derivatives exhibited selective toxicity on HeLa cells, while they had no significant toxic effects on normal cells. Besides, flow cytometric analyses, showed that the selected compounds induced apoptosis in HeLa cells, and could also result to G1 cell cycle arrest. In conclusion, analyzing structural-activity relationships revealed that a prenylation substitution at position 6 of the coumarin ring greatly improved anticancer properties of these agents. As these derivatives exerted their cytotoxic effects via apoptosis and were not toxic on normal cells, they can be considered as effective anticancer agents for further preclinical experiments.
Collapse
Affiliation(s)
- Ebrahim H Maleki
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Sadeghian
- Neurogenic Inflammation Research Center, Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|