1
|
Horta M, Soares P, Sarmento B, Leite Pereira C, Lima RT. Nanostructured lipid carriers for enhanced batimastat delivery across the blood-brain barrier: an in vitro study for glioblastoma treatment. Drug Deliv Transl Res 2025:10.1007/s13346-024-01775-8. [PMID: 39760929 DOI: 10.1007/s13346-024-01775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Glioblastoma presents a significant treatment challenge due to the blood-brain barrier (BBB) hindering drug delivery, and the overexpression of matrix metalloproteinases (MMPs), which promotes tumor invasiveness. This study introduces a novel nanostructured lipid carrier (NLC) system designed for the delivery of batimastat, an MMP inhibitor, across the BBB and into the glioblastoma microenvironment. The NLCs were functionalized with epidermal growth factor (EGF) and a transferrin receptor-targeting construct to enhance BBB penetration and entrapment within the tumor microenvironment. NLCs were prepared by ultrasonicator-assisted hot homogenization, followed by surface functionalization with EGF and the construct though carbodiimide chemistry. The construct was successfully conjugated with an efficiency of 81%. Two functionalized NLC formulations, fMbat and fNbat, differing in the surfactant amount, were characterized. fMbat had a size of 302 nm, a polydispersity index (PDI) of 0.298, a ζ-potential (ZP) of -27.1 mV and an 85% functionalization efficiency (%FE), whereas fNbat measured 285 nm, with a PDI of 0.249, a ZP of -28.6 mV and a %FE of 92%. Both formulations achieved a drug loading of 0.42 μg/mg. In vitro assays showed that fNbat was cytotoxic and failed to cross the BBB, while fMbat showed cytocompatibility at concentrations 10 times higher than the drug's IC50. Additionally, fMbat inhibited MMP-2 activity between 11 and 62% across different cell lines and achieved a three-fold increase in BBB penetration upon functionalization. Our results suggest that the fMbat formulation has potential for enhancing GB treatment by overcoming current drug delivery limitations and may be combined with other therapeutic strategies for improved outcomes.
Collapse
Affiliation(s)
- Miguel Horta
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Catarina Leite Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| | - Raquel T Lima
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| |
Collapse
|
2
|
Prieto-López L, Pereiro X, Vecino E. The mechanics of the retina: Müller glia role on retinal extracellular matrix and modelling. Front Med (Lausanne) 2024; 11:1393057. [PMID: 39296899 PMCID: PMC11410058 DOI: 10.3389/fmed.2024.1393057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
The retina is a highly heterogeneous tissue, both cell-wise but also regarding its extracellular matrix (ECM). The stiffness of the ECM is pivotal in retinal development and maturation and has also been associated with the onset and/or progression of numerous retinal pathologies, such as glaucoma, proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), epiretinal membrane (ERM) formation or uveitis. Nonetheless, much remains unknown about the biomechanical milieu of the retina, and specifically the role that Müller glia play as principal mechanosensors and major producers of ECM constituents. So far, new approaches need to be developed to further the knowledge in the field of retinal mechanobiology for ECM-target applications to arise. In this review, we focus on the involvement of Müller glia in shaping and altering the retinal ECM under both physiological and pathological conditions and look into various biomaterial options to more accurately replicate the impact of matrix stiffness in vitro.
Collapse
Affiliation(s)
- Laura Prieto-López
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| |
Collapse
|
3
|
de Oliveira SG, Kotowski N, Sampaio-Filho HR, Aguiar FHB, Dávila AMR, Jardim R. Metalloproteinases in Restorative Dentistry: An In Silico Study toward an Ideal Animal Model. Biomedicines 2023; 11:3042. [PMID: 38002041 PMCID: PMC10669239 DOI: 10.3390/biomedicines11113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 11/26/2023] Open
Abstract
In dentistry, various animal models are used to evaluate adhesive systems, dental caries and periodontal diseases. Metalloproteinases (MMPs) are enzymes that degrade collagen in the dentin matrix and are categorized in over 20 different classes. Collagenases and gelatinases are intrinsic constituents of the human dentin organic matrix fibrillar network and are the most abundant MMPs in this tissue. Understanding such enzymes' action on dentin is important in the development of approaches that could reduce dentin degradation and provide restorative procedures with extended longevity. This in silico study is based on dentistry's most used animal models and intends to search for the most suitable, evolutionarily close to Homo sapiens. We were able to retrieve 176,077 mammalian MMP sequences from the UniProt database. These sequences were manually curated through a three-step process. After such, the remaining 3178 sequences were aligned in a multifasta file and phylogenetically reconstructed using the maximum likelihood method. Our study inferred that the animal models most evolutionarily related to Homo sapiens were Orcytolagus cuniculus (MMP-1 and MMP-8), Canis lupus (MMP-13), Rattus norvegicus (MMP-2) and Orcytolagus cuniculus (MMP-9). Further research will be needed for the biological validation of our findings.
Collapse
Affiliation(s)
- Simone Gomes de Oliveira
- Piracicaba School of Dentistry, Campinas State University, Piracicaba 13414-903, SP, Brazil
- School of Dentistry, State University of Rio de Janeiro, Rio de Janeiro 20551-030, RJ, Brazil
| | - Nelson Kotowski
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (N.K.); (A.M.R.D.)
| | | | | | - Alberto Martín Rivera Dávila
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (N.K.); (A.M.R.D.)
| | - Rodrigo Jardim
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (N.K.); (A.M.R.D.)
| |
Collapse
|
4
|
Ji Y, Huang W, Chen Y, Zhang X, Wu F, Tang W, Lu Z, Huang C. Inhibition of MMP-2 and MMP-9 attenuates surgery-induced cognitive impairment in aged mice. Brain Res Bull 2023; 204:110810. [PMID: 37939860 DOI: 10.1016/j.brainresbull.2023.110810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND The inhibition of matrix metalloproteinases (MMPs) has shown potential in the treatment of various neurodegenerative diseases, and perioperative neurocognitive disorders (PND) is accompanied by the increased expression of MMP-2 and MMP-9 in the hippocampus. However, the effect of inhibiting MMP-2 and MMP-9 on PND is not clear. In this study we aimed to evaluate the effects of inhibiting MMP-2 and MMP-9 on cognitive function in the aged mice after surgery, in order to find a possible target for the prevention and treatment of PND METHODS: In this study, 14-month-old C57BL/6 mice were used to establish a PND model by tibial fracture surgery and sevoflurane anesthesia. Three days later, part of the mice were subjected to cognitive assessment and the other was sacrificed for biochemical analysis. We used the Novel object recognition test and Fear conditioning test to evaluate the postoperative cognitive function of mice. The expression of mmp-2 and MMP-9 was detected by western blotting. We also examined the expression of claudin-5 and occludin using Western blotting, and the activation of microglia and astrocytes using immunofluorescence. RESULTS The results showed that surgery increased the expression of MMP-2 and MMP-9 in the hippocampus of mice, accompanied by cognitive impairment, decreased expression of claudin-5 and occludin, and increased activation of microglia and astrocytes. However, inhibition of MMP-2 and MMP-9 expression by SB-3CT reversed these changes. CONCLUSIONS Our study shows that inhibition of MMP-2 and MMP-9 alleviates anesthesia/surgery-induced cognitive decline by increasing BBB integrity and inhibiting glial cell activation.
Collapse
Affiliation(s)
- Yiqin Ji
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Wanbo Huang
- Ningbo University Health Science Center, Ningbo 315211, Zhejiang, China
| | - Yijun Chen
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Xincai Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Fan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Wan Tang
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Zihui Lu
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Changshun Huang
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China.
| |
Collapse
|
5
|
Hsieh CY, Lin CY, Wang SS, Chou YE, Chien MH, Wen YC, Hsieh MJ, Yang SF. Impact of Clinicopathological Characteristics and Tissue Inhibitor of Metalloproteinase-3 Polymorphism Rs9619311 on Biochemical Recurrence in Taiwanese Patients with Prostate Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:306. [PMID: 36612628 PMCID: PMC9819570 DOI: 10.3390/ijerph20010306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The tissue inhibitors of metalloproteinases-3 (TIMP3) are not only endogenous regulators of matrix metalloproteinases (MMPs), but also induce apoptosis and inhibit endothelial cell migration and angiogenesis. The focus of this study was to investigate the relationship between TIMP3 genetic polymorphisms and biochemical recurrence and clinicopathological features of prostate cancer. The TIMP3 rs9619311, rs9862, and rs11547635 genetic polymorphisms were analyzed by real-time polymerase chain reaction to determine their genotypic distributions in 579 patients with prostate cancer. This study found that individuals with the TIMP3 rs9619311 TC or TC + CC genotypes have a significantly higher risk of biochemical recurrence of prostate cancer (p = 0.036 and 0.033, respectively). Moreover, in the multivariate analysis, our results showed that pathologic Gleason grade, pathologic T stage, seminal vesicle invasion, lymphovascular invasion, and TIMP3 rs9619311 were associated with increased odds of biochemical recurrence. Patients with a PSA concentration under 7 ng/mL that were found to have the TIMP3 rs9619311 genetic polymorphism were associated with Gleason total score upgrade (p = 0.012) and grade group upgrade (p = 0.023). Compared with the CC homozygous, the TIMP3 rs9862 CT + TT polymorphic variant was found to be associated with clinically advanced tumor stage (p = 0.030) and Gleason total score upgrade (p = 0.002) in prostate cancer patients. In conclusion, the results of our study demonstrated that the TIMP3 rs9619311 genetic polymorphism was significantly associated with susceptibility to biochemical recurrence of prostate cancer. TIMP3 genetic polymorphisms, especially rs9619311, can serve as key predictors of biochemical recurrence and disease prognosis of prostate cancer.
Collapse
Affiliation(s)
- Chun-Yu Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chia-Yen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Shian-Shiang Wang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
6
|
Yaghmoor RB, Jamal H, Abed H, Allan E, Ashley P, Young A. Incorporation of MMP inhibitors into dental adhesive systems and bond strength of coronal composite restorations: A systematic review and meta-analysis of in vitro studies. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:298-315. [PMID: 36247748 PMCID: PMC9557023 DOI: 10.1016/j.jdsr.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022] Open
Abstract
Purpose To systematically review in vitro studies that incorporated MMP inhibitors into adhesive systems in terms of the effect on immediate and aged bond strength of dental composite to dentine. Materials and methods Independently, two reviewers conducted an electronic search in three databases (MEDLINE, EMBASE, and Google Scholar) following the Preferred Reporting Items for Systematic Review and Meta-Analyses Protocols (PRISMA-P), up to 6 March 2022. Results The search resulted in 894 papers, 33 of which were eligible to be included in the review; of those, 13 fulfilled the meta-analysis eligibility criteria. Nineteen inhibitors were used among the studies, and those included in the meta-analysis were 2%, 0.2% chlorhexidine (CHX), 5 µM GM1489, and 0.5%, 1% benzalkonium chloride (BAC). In the meta-analysis, while above inhibitors showed no adverse effect on bond strength, 0.2% CHX and 5 µM GM1489 caused a significant increase in immediate and 12-months bond strength. All other inhibitors resulted in a significant increase in bond strength at six months of ageing. Conclusions Incorporation of MMP inhibitors into the adhesive system has no unfavourable effect on immediate bond strength but a favourable effect on longer-term bond strength. Additionally, inhibitors other than CHX could have similar or better effects on bond strength.
Collapse
Affiliation(s)
- Rayan B. Yaghmoor
- Department of Restorative Dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital London, NW3 2PF, UK
- Department of Microbial Diseases, UCL Eastman Dental Institute, Royal Free Hospital, London NW3 2PF, UK
- Corresponding author at: Department of Restorative Dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Hasan Jamal
- Unit of Paediatric Dentistry, UCL Eastman Dental Institute, London WC1E 6DE, UK
| | - Hassan Abed
- Department of Basic and Clinical Oral Sciences, Umm Al-Qura University, Faculty of Dentistry, Makkah 24381, Saudi Arabia
| | - Elaine Allan
- Department of Microbial Diseases, UCL Eastman Dental Institute, Royal Free Hospital, London NW3 2PF, UK
| | - Paul Ashley
- Unit of Paediatric Dentistry, UCL Eastman Dental Institute, London WC1E 6DE, UK
| | - Anne Young
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital London, NW3 2PF, UK
| |
Collapse
|
7
|
Małek A, Kocot J, Mitrowska K, Posyniak A, Kurzepa J. Bee Venom Effect on Glioblastoma Cells Viability and Gelatinase Secretion. Front Neurosci 2022; 16:792970. [PMID: 35221898 PMCID: PMC8873382 DOI: 10.3389/fnins.2022.792970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe involvement of MMP-2 and MMP-9 in the pathogenesis of various kinds of cancers including glioblastoma is well documented. The evaluation of the anticancer potential of honey bee (Apis mellifera) venom (BV) consisting of the inhibition of MMP-2 and MMP-9 secretion in a glioblastoma cell culture model was the aim of the study.Methods8-MG-BA and GAMG human primary glioblastoma cell lines vs. HT-22 mouse hippocampal neuronal cells were applied for the study. The BV dose (0.5, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, and 5.0 μg/ml) and time-dependent (24, 48, 72 h) cytotoxicity was evaluated with the tetrazolium-based colorimetric assay (MTT test). MMP-2 and MMP-9 activities in the cell culture medium under different BV concentrations were determined by gelatin zymography.ResultsA dose and time-dependent BV effect on cytotoxicity of both glioblastoma cell lines and hippocampus line was observed. The weakest, but statistically important effect was exerted by BV on HT-22 cells. The greatest cytotoxic effect of BV was observed on the 8-MG-BA line, where a statistically significant reduction in viability was observed at the lowest BV dose and the shortest incubation time. The reduction of both gelatinases secretion was observed at 8-MG-BA and GAMG lines without significant effect of HT-22 cell line.ConclusionIn vitro studies indicate that BV has both cytotoxic and inhibitory effects on the secretion of MMP-2 and MMP-9 in selected lines of glioma, suggesting anticancer properties of BV.
Collapse
Affiliation(s)
- Agata Małek
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
- *Correspondence: Agata Małek,
| | - Joanna Kocot
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Kamila Mitrowska
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
- Jacek Kurzepa,
| |
Collapse
|
8
|
Zhang M, Hamblin MH, Yin KJ. Long non-coding RNAs mediate cerebral vascular pathologies after CNS injuries. Neurochem Int 2021; 148:105102. [PMID: 34153353 DOI: 10.1016/j.neuint.2021.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Central nervous system (CNS) injuries are one of the leading causes of morbidity and mortality worldwide, accompanied with high medical costs and a decreased quality of life. Brain vascular disorders are involved in the pathological processes of CNS injuries and might play key roles for their recovery and prognosis. Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs), which comprise a very heterogeneous group of non-protein-coding RNAs greater than 200 nucleotides, have emerged as functional mediators in the regulation of vascular homeostasis under pathophysiological conditions. Remarkably, lncRNAs can regulate gene transcription and translation, thus interfering with gene expression and signaling pathways by different mechanisms. Hence, a deeper insight into the function and regulatory mechanisms of lncRNAs following CNS injury, especially cerebrovascular-related lncRNAs, could help in establishing potential therapeutic strategies to improve or inhibit neurological disorders. In this review, we highlight recent advancements in understanding of the role of lncRNAs and their application in mediating cerebrovascular pathologies after CNS injury.
Collapse
Affiliation(s)
- Mengqi Zhang
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue SL-83, New Orleans, LA, 70112, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
9
|
Weinreb RN, Robinson MR, Dibas M, Stamer WD. Matrix Metalloproteinases and Glaucoma Treatment. J Ocul Pharmacol Ther 2020; 36:208-228. [PMID: 32233938 PMCID: PMC7232675 DOI: 10.1089/jop.2019.0146] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/17/2020] [Indexed: 01/19/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that degrade extracellular matrix (ECM) components such as collagen and have important roles in multiple biological processes, including development and tissue remodeling, both in health and disease. The activity of MMPs is influenced by the expression of MMPs and tissue inhibitors of metalloproteinase (TIMPs). In the eye, MMP-mediated ECM turnover in the juxtacanalicular region of the trabecular meshwork (TM) reduces outflow resistance in the conventional outflow pathway and helps maintain intraocular pressure (IOP) homeostasis. An imbalance in the MMP/TIMP ratio may be involved in the elevated IOP often associated with glaucoma. The prostaglandin analog/prostamide (PGA) class of topical ocular hypotensive medications used in glaucoma treatment reduces IOP by increasing outflow through both conventional and unconventional (uveoscleral) outflow pathways. Evidence from in vivo and in vitro studies using animal models and anterior segment explant and cell cultures indicates that the mechanism of IOP lowering by PGAs involves increased MMP expression in the TM and ciliary body, leading to tissue remodeling that enhances conventional and unconventional outflow. PGA effects on MMP expression are dependent on the identity and concentration of the PGA. An intracameral sustained-release PGA implant (Bimatoprost SR) in development for glaucoma treatment can reduce IOP for many months after expected intraocular drug bioavailability. We hypothesize that the higher concentrations of bimatoprost achieved in ocular outflow tissues with the implant produce greater MMP upregulation and more extensive, sustained MMP-mediated target tissue remodeling, providing an extended duration of effect.
Collapse
Affiliation(s)
- Robert N. Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California
| | | | | | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina
| |
Collapse
|
10
|
Miranda MEDSNG, Silva EMD, Oliveira MFD, Simmer FS, Santos GBD, Amaral CM. Resin-dentin bond stability of etch-and-rinse adhesive systems with different concentrations of MMP inhibitor GM1489. J Appl Oral Sci 2020; 28:e20190499. [PMID: 32348441 PMCID: PMC7185984 DOI: 10.1590/1678-7757-2019-0499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/20/2020] [Indexed: 11/22/2022] Open
Abstract
Enzymatic degradation of the hybrid layer can be accelerated by the activation of dentin metalloproteinases (MMP) during the bonding procedure. MMP inhibitors may be used to contain this process. Objective To evaluate the degree of conversion (DC%), dentin bond strength (µTBS) (immediate and after 1 year of storage in water), and nanoleakage of an experimental (EXP) and a commercial (SB) adhesive system, containing different concentrations of the MMP inhibitor GM1489: 0, 1 µM, 5 µM and 10 µM. Methodology DC% was evaluated by FT-IR spectroscopy. Dentin bond strength was evaluated by µTBS test. Half of beams were submitted to the µTBS test after 24 h and the other half, after storage for 1 year. From each tooth and storage time, 2 beams were reserved for nanoleakage testing. Data were analyzed using ANOVA and Tukey's test to compare means (α=0.05). Results All adhesive systems maintained the µTBS after 1 year of storage. Groups with higher concentrations of inhibitor (5 µM and 10 µM) showed higher µTBS values than groups without inhibitor or with 1 µM. The nanoleakage values of all groups showed no increase after 1 year of storage and values were similar for SB and EXP groups, in both storage periods. The inhibitor did not affect the DC% of the EXP groups, but the SB5 and SB10 groups showed higher DC% values than those of SB0 and SB1. Conclusions The incorporation of GM1489 in the adhesive systems had no detrimental effect on DC%. The concentrations of 5 µM GM1489 for SB and 5 µM or 10 µM for EXP provided higher μTBS than groups without GM1489, in the evaluation after 1 year of storage; whereas the concentration of inhibitor did not affect adhesive systems nanoleakage.
Collapse
Affiliation(s)
| | - Eduardo Moreira da Silva
- LABIOM-R, Departamento de Odontotécnica, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brasil
| | - Mariana Flôres de Oliveira
- LABIOM-R, Departamento de Odontotécnica, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brasil
| | - Fabiana Souza Simmer
- LABIOM-R, Departamento de Odontotécnica, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brasil
| | - Glauco Botelho Dos Santos
- LABIOM-R, Departamento de Odontotécnica, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brasil
| | - Cristiane Mariote Amaral
- LABIOM-R, Departamento de Odontotécnica, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brasil
| |
Collapse
|
11
|
Orhan IE. Enzyme Inhibitors as the Attractive Targets for the Treatment of Various Diseases. Curr Med Chem 2019; 26:3206-3207. [PMID: 31526340 DOI: 10.2174/092986732618190821115641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Zhang L, Wang H. Long Non-coding RNA in CNS Injuries: A New Target for Therapeutic Intervention. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:754-766. [PMID: 31437654 PMCID: PMC6709344 DOI: 10.1016/j.omtn.2019.07.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
Abstract
CNS injuries, such as traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), and cerebral ischemic stroke, are important causes of death and long-term disability worldwide. As an important class of pervasive genes involved in many pathophysiological processes, long non-coding RNAs (lncRNAs) have received attention in the past decades. Multiple studies indicate that lncRNAs are abundant in the CNS and have a key role in brain function as well as many neurological disorders, especially in CNS injuries. Several investigations have deciphered that regulation of lncRNAs exert pro-angiogenesis, anti-apoptosis, and anti-inflammation effects in CNS injury via different molecules and pathways, including microRNA (miRNA), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT), Notch, and p53. Thus, lncRNAs show great promise as molecular targets in CNS injuries. In this article, we provide an updated review of the current state of our knowledge about the relationship between lncRNAs and CNS injuries, highlighting the specific roles of lncRNAs in CNS injuries.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|