1
|
Petrušić I, Ha WS, Labastida-Ramirez A, Messina R, Onan D, Tana C, Wang W. Influence of next-generation artificial intelligence on headache research, diagnosis and treatment: the junior editorial board members' vision - part 1. J Headache Pain 2024; 25:151. [PMID: 39272003 PMCID: PMC11401391 DOI: 10.1186/s10194-024-01847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Artificial intelligence (AI) is revolutionizing the field of biomedical research and treatment, leveraging machine learning (ML) and advanced algorithms to analyze extensive health and medical data more efficiently. In headache disorders, particularly migraine, AI has shown promising potential in various applications, such as understanding disease mechanisms and predicting patient responses to therapies. Implementing next-generation AI in headache research and treatment could transform the field by providing precision treatments and augmenting clinical practice, thereby improving patient and public health outcomes and reducing clinician workload. AI-powered tools, such as large language models, could facilitate automated clinical notes and faster identification of effective drug combinations in headache patients, reducing cognitive burdens and physician burnout. AI diagnostic models also could enhance diagnostic accuracy for non-headache specialists, making headache management more accessible in general medical practice. Furthermore, virtual health assistants, digital applications, and wearable devices are pivotal in migraine management, enabling symptom tracking, trigger identification, and preventive measures. AI tools also could offer stress management and pain relief solutions to headache patients through digital applications. However, considerations such as technology literacy, compatibility, privacy, and regulatory standards must be adequately addressed. Overall, AI-driven advancements in headache management hold significant potential for enhancing patient care, clinical practice and research, which should encourage the headache community to adopt AI innovations.
Collapse
Affiliation(s)
- Igor Petrušić
- Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, 12-16 Studentski Trg Street, Belgrade, 11000, Serbia.
| | - Woo-Seok Ha
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Alejandro Labastida-Ramirez
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Roberta Messina
- Neuroimaging research unit and Neurology unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Dilara Onan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Claudio Tana
- Center of Excellence on Headache, Geriatrics Unit, SS. University Hospital of Chieti, Chieti, Italy
| | - Wei Wang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
3
|
The putative role of trigemino-vascular system in brain perfusion homeostasis and the significance of the migraine attack. Neurol Sci 2022; 43:5665-5672. [PMID: 35802218 PMCID: PMC9385793 DOI: 10.1007/s10072-022-06200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
Besides representing the place where a migraine attack generates, what is the physiological role of peptidergic control of arteriolar caliber within the trigemino-vascular system? Considering that the shared goal of most human CGRP-based neurosensory systems is the protection from an acute threat, especially if hypoxic, what is the end meaning of a migraine attack? In this paper, we have reviewed available evidence on the possible role of the trigemino-vascular system in maintaining cerebral perfusion pressure homeostasis, despite the large physiological fluctuations in intracranial pressure occurring in daily life activities. In this perspective, the migraine attack is presented as the response to a cerebral hypoxic threat consequent to a deranged intracranial pressure control aimed at generating a temporary withdrawal from the environment with limitation of physical activity, a condition required to promote the restoration of cerebral fluids dynamic balance.
Collapse
|
4
|
Abdulhussein MA, An X, Alsakaa AA, Ming D. Lack of habituation in migraine patients and Evoked Potential types: Analysis study from EEG signals. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2022. [DOI: 10.1080/02522667.2022.2095958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Msallam Abbas Abdulhussein
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Faculty of Computer Science and Mathematics, Kufa University, Najaf, Iraq
| | - Xingwei An
- Tianjin International Joint Research Centre for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Akeel A. Alsakaa
- Department of Computer Science, University of Kerbala, Karbala, Iraq
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Li Y, Chen G, Lv J, Hou L, Dong Z, Wang R, Su M, Yu S. Abnormalities in resting-state EEG microstates are a vulnerability marker of migraine. J Headache Pain 2022; 23:45. [PMID: 35382739 PMCID: PMC8981824 DOI: 10.1186/s10194-022-01414-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
Background Resting-state EEG microstates are thought to reflect brief activations of several interacting components of resting-state brain networks. Surprisingly, we still know little about the role of these microstates in migraine. In the present study, we attempted to address this issue by examining EEG microstates in patients with migraine without aura (MwoA) during the interictal period and comparing them with those of a group of healthy controls (HC). Methods Resting-state EEG was recorded in 61 MwoA patients (50 females) and 66 HC (50 females). Microstate parameters were compared between the two groups. We computed four widely identified canonical microstate classes A-D. Results Microstate classes B and D displayed higher time coverage and occurrence in the MwoA patient group than in the HC group, while microstate class C exhibited significantly lower time coverage and occurrence in the MwoA patient group. Meanwhile, the mean duration of microstate class C was significantly shorter in the MwoA patient group than in the HC group. Moreover, among the MwoA patient group, the duration of microstate class C correlated negatively with clinical measures of headache-related disability as assessed by the six-item Headache Impact Test (HIT-6). Finally, microstate syntax analysis showed significant differences in transition probabilities between the two groups, primarily involving microstate classes B, C, and D. Conclusions By exploring EEG microstate characteristics at baseline we were able to explore the neurobiological mechanisms underlying altered cortical excitability and aberrant sensory, affective, and cognitive processing, thus deepening our understanding of migraine pathophysiology.
Collapse
|
6
|
Chen G, Li Y, Dong Z, Wang R, Zhao D, Obeso I, Yu S. Response inhibition alterations in migraine: evidence from event-related potentials and evoked oscillations. J Headache Pain 2020; 21:119. [PMID: 33008328 PMCID: PMC7531083 DOI: 10.1186/s10194-020-01187-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs. METHODS Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants' neural activity supporting response inhibition. RESULTS Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs. CONCLUSIONS Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.
Collapse
Affiliation(s)
- Guoliang Chen
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, The first Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Department of Psychiatry, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Yansong Li
- Reward, Competition and Social Neuroscience Lab, Department of Psychology, School of Social and Behavioral Sciences, 210023, Nanjing, China
- Institute for Brain Sciences, Nanjing University, 210023, Nanjing, China
| | - Zhao Dong
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, The first Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Rongfei Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, The first Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Dengfa Zhao
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, The first Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Ignacio Obeso
- HM Hospitales - Centro Integral en Neurociencias HM CINAC, Móstoles, Madrid, Spain
| | - Shengyuan Yu
- Medical School of Chinese PLA, Beijing, China.
- Department of Neurology, The first Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| |
Collapse
|