1
|
Zhang K, Liang J, Zhang B, Huang L, Yu J, Xiao X, He Z, Tao H, Yuan J. A Marine Natural Product, Harzianopyridone, as an Anti-ZIKV Agent by Targeting RNA-Dependent RNA Polymerase. Molecules 2024; 29:978. [PMID: 38474490 DOI: 10.3390/molecules29050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The Zika virus (ZIKV) is a mosquito-borne virus that already poses a danger to worldwide human health. Patients infected with ZIKV generally have mild symptoms like a low-grade fever and joint pain. However, severe symptoms can also occur, such as Guillain-Barré syndrome, neuropathy, and myelitis. Pregnant women infected with ZIKV may also cause microcephaly in newborns. To date, we still lack conventional antiviral drugs to treat ZIKV infections. Marine natural products have novel structures and diverse biological activities. They have been discovered to have antibacterial, antiviral, anticancer, and other therapeutic effects. Therefore, marine products are important resources for compounds for innovative medicines. In this study, we identified a marine natural product, harzianopyridone (HAR), that could inhibit ZIKV replication with EC50 values from 0.46 to 2.63 µM while not showing obvious cytotoxicity in multiple cellular models (CC50 > 45 µM). Further, it also reduced the expression of viral proteins and protected cells from viral infection. More importantly, we found that HAR directly bound to the ZIKV RNA-dependent RNA polymerase (RdRp) and suppressed its polymerase activity. Collectively, our findings provide HAR as an option for the development of anti-ZIKV drugs.
Collapse
Affiliation(s)
- Kexin Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jingyao Liang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Bingzhi Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lishan Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianchen Yu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuhan Xiao
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenjian He
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Norshidah H, Leow CH, Ezleen KE, Wahab HA, Vignesh R, Rasul A, Lai NS. Assessing the potential of NS2B/NS3 protease inhibitors biomarker in curbing dengue virus infections: In silico vs. In vitro approach. Front Cell Infect Microbiol 2023; 13:1061937. [PMID: 36864886 PMCID: PMC9971573 DOI: 10.3389/fcimb.2023.1061937] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
An increase in the occurrence of viral infectious diseases is a global concern for human health. According to a WHO report, dengue virus (DENV) is one of the most common viral diseases affecting approximately 400 million people annually, with worsening symptoms in nearly 1% of cases. Both academic and industrial researchers have conducted numerous studies on viral epidemiology, virus structure and function, source and route of infection, treatment targets, vaccines, and drugs. The development of CYD-TDV or Dengvaxia® vaccine has been a major milestone in dengue treatment. However, evidence has shown that vaccines have some drawbacks and limitations. Therefore, researchers are developing dengue antivirals to curb infections. DENV NS2B/NS3 protease is a DENV enzyme essential for replication and virus assembly, making it an interesting antiviral target. For faster hit and lead recognition of DENV targets, methods to screen large number of molecules at lower costs are essential. Similarly, an integrated and multidisciplinary approach involving in silico screening and confirmation of biological activity is required. In this review, we discuss recent strategies for searching for novel DENV NS2B/NS3 protease inhibitors from the in silico and in vitro perspectives, either by applying one of the approaches or by integrating both. Therefore, we hope that our review will encourage researchers to integrate the best strategies and encourage further developments in this area.
Collapse
Affiliation(s)
- Harun Norshidah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia,Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh, Perak, Malaysia,*Correspondence: Harun Norshidah, ; Ramachandran Vignesh, ; Ngit Shin Lai,
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | | | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ramachandran Vignesh
- Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh, Perak, Malaysia,*Correspondence: Harun Norshidah, ; Ramachandran Vignesh, ; Ngit Shin Lai,
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia,*Correspondence: Harun Norshidah, ; Ramachandran Vignesh, ; Ngit Shin Lai,
| |
Collapse
|
3
|
Affiliation(s)
- Luciana Scotti
- Federal University of Paraíba, Health Sci. Center, 50670-910, Joao Pessoa PB, Brazil
| | - Marcus T. Scotti
- Federal University of Paraíba, Health Sci. Center, 50670-910, Joao Pessoa PB, Brazil
| |
Collapse
|