1
|
Matotoka MM, Masoko P. Evaluation of the Antioxidant, Cytotoxicity, Antibacterial, Anti-Motility, and Anti-Biofilm Effects of Myrothamnus flabellifolius Welw. Leaves and Stem Defatted Subfractions. PLANTS (BASEL, SWITZERLAND) 2024; 13:847. [PMID: 38592866 PMCID: PMC10974473 DOI: 10.3390/plants13060847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
The formation of biofilms underscores the challenge of treating bacterial infections. The study aimed to assess the antioxidant, cytotoxicity, antibacterial, anti-motility, and anti-biofilm effects of defatted fractions from Myrothamnus flabellifolius (resurrection plant). Antioxidant activity was assessed using DPPH radical scavenging and hydrogen peroxide assays. Cytotoxicity was screened using a brine shrimp lethality assay. Antibacterial activity was determined using the micro-dilution and growth curve assays. Antibiofilm potential was screened using the crystal violet and tetrazolium reduction assay. Liquid-liquid extraction of crude extracts concentrated polyphenols in the ethyl acetate and n-butanol fractions. Subsequently, these fractions had notable antioxidant activity and demonstrated broad-spectrum antibacterial activity against selected Gram-negative and Gram-positive bacteria and Mycobacterium smegmatis (MIC values < 630 μg/mL). Growth curves showed that the bacteriostatic inhibition by the ethyl acetate fractions was through the extension of the lag phase and/or suppression of the growth rate. The sub-inhibitory concentrations of the ethyl acetate fractions inhibited the swarming motility of Pseudomonas aeruginosa and Klebsiella pneumoniae by 100% and eradicated more than 50% of P. aeruginosa biofilm biomass. The polyphenolic content of M. flabellifolius plays an important role in its antibacterial, anti-motility, and antibiofilm activity, thus offering an additional strategy to treat biofilm-associated infections.
Collapse
Affiliation(s)
| | - Peter Masoko
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| |
Collapse
|
2
|
Kulikouskaya V, Nikalaichuk V, Hileuskaya K, Ladutska A, Grigoryan K, Kozerozhets I, Hovsepyan V, Sargsyan M, Sidarenka A. Alginate coated biogenic silver nanoparticles for the treatment of Pseudomonas infections in rainbow trout. Int J Biol Macromol 2023; 251:126302. [PMID: 37573909 DOI: 10.1016/j.ijbiomac.2023.126302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Pseudomonas species are among the main pathogens causing rainbow trout infections. The present study provides a simple, green, sustainable, and rapid technique to synthesize of biogenic alginate-capped silver nanoparticles (Alg-Ag NPs) suitable for the treatment of Pseudomonas infections. It has been shown that the mechanism (aggregative or autocatalytic) of Alg-Ag NPs formation depended on Alg concentration and the heating approach used. The rate constants and activation energy were calculated. Alg-Ag NPs were characterized by UV-Vis, FTIR, XRD, TEM, AFM, XPS, and DLS. The optimal conditions for the fabrication of spherically-shaped (17-19 nm) and negatively-charged (zeta-potential <-50 mV) Alg-Ag NPs, which are stable during 9 months, included hot-plate assisted synthesis at 100 °C in diluted (1 mg/mL) Alg solutions. In vitro studies showed that Alg-Ag NPs exhibited prominent antimicrobial activity against collection Pseudomonas strains (inhibition zones ranged from 9.0 ± 1.0 to 19.0 ± 1.0 mm), with no significant loss of antibacterial efficacy after 9 months of storage. AFM analysis confirmed that the antibacterial effect of Alg-Ag NPs dealt with the direct nanomechanical disrupting of bacterial cells. The ability of Alg-Ag NPs to inhibit the growth of virulent P.aeruginosa, P.fluorescens and P. putida strains isolated from infected rainbow trout was evaluated. All tested strains were susceptible to Alg(10)-Ag NPs, while Alg(1)-Ag NPs demonstrated a limited strain-specific antibacterial effect. The obtained data displayed the prospects for the application of biogenic Alg-Ag NPs to create novel delivery systems for combating Pseudomonas infections in rainbow trout.
Collapse
Affiliation(s)
- Viktoryia Kulikouskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna Str., 220084 Minsk, Belarus.
| | - Viktoryia Nikalaichuk
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna Str., 220084 Minsk, Belarus
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna Str., 220084 Minsk, Belarus
| | - Alena Ladutska
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus, 2 Kuprevich Str., 220084 Minsk, Belarus
| | - Karine Grigoryan
- Yerevan State University, 1 Alek Manukyan St, Yerevan 0025, Armenia
| | - Irina Kozerozhets
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119991 Moscow, Russia
| | | | - Mariam Sargsyan
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119991 Moscow, Russia
| | - Anastasiya Sidarenka
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus, 2 Kuprevich Str., 220084 Minsk, Belarus
| |
Collapse
|
3
|
Di Consiglio M, Sturabotti E, Brugnoli B, Piozzi A, Migneco LM, Francolini I. Synthesis of sustainable eugenol/hydroxyethylmethacrylate-based polymers with antioxidant and antimicrobial properties. Polym Chem 2023. [DOI: 10.1039/d2py01183b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eugenol is a phenolic monoterpenoid, emplyed in this study to obtain bio-based antimicrobial and antioxidant methacrylate polymers.
Collapse
|
4
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyze the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance wasn't clearly defined. Further, viable but non-culturable (VBNC) form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.,Present Address: Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
5
|
Cattò C, Villa F, Cappitelli F. Understanding the Role of the Antioxidant Drug Erdosteine and Its Active Metabolite on Staphylococcus aureus Methicillin Resistant Biofilm Formation. Antioxidants (Basel) 2021; 10:antiox10121922. [PMID: 34943025 PMCID: PMC8698571 DOI: 10.3390/antiox10121922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023] Open
Abstract
Increasing numbers of researches have suggested that some drugs with reactive oxygen species (ROS)-mediated mechanisms of action modulate biofilm formation of some pathogenic strains. However, the full contribution of ROS to biofilm development is still an open question. In this paper, the correlations between the antioxidant drug Erdosteine (Er) and its active Metabolite I (Met I), ROS and biofilm development of two strains of methicillin resistant Staphylococcus aureus are presented. Experiments revealed that Er and Met I at 2 and 5 mg/L increased up to three orders of magnitude the number of biofilm-dwelling cells, while the content of ROS within the biofilms was reduced above the 87%, with a major effect of Met I in comparison to Er. Comparative proteomics showed that, 5 mg/L Met I modified the expression of 30% and 65% of total proteins in the two strains respectively. Some proteins involved in cell replication were upregulated, and a nitric oxide-based mechanism is assumed to modulate the biofilm development by changing quorum sensitive pathways. Additionally, several proteins involved in virulence were downregulated in the presence of Met I, suggesting that treated cells, despite being greater in number, might have lost part of their virulence.
Collapse
|
6
|
Pruteanu M, Hernández Lobato JI, Stach T, Hengge R. Common plant flavonoids prevent the assembly of amyloid curli fibres and can interfere with bacterial biofilm formation. Environ Microbiol 2020; 22:5280-5299. [PMID: 32869465 DOI: 10.1111/1462-2920.15216] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023]
Abstract
Like all macroorganisms, plants have to control bacterial biofilm formation on their surfaces. On the other hand, biofilms are highly tolerant against antimicrobial agents and other stresses. Consequently, biofilms are also involved in human chronic infectious diseases, which generates a strong demand for anti-biofilm agents. Therefore, we systematically explored major plant flavonoids as putative anti-biofilm agents using different types of biofilms produced by Gram-negative and Gram-positive bacteria. In Escherichia coli macrocolony biofilms, the flavone luteolin and the flavonols myricetin, morin and quercetin were found to strongly reduce the extracellular matrix. These agents directly inhibit the assembly of amyloid curli fibres by driving CsgA subunits into an off-pathway leading to SDS-insoluble oligomers. In addition, they can interfere with cellulose production by still unknown mechanisms. Submerged biofilm formation, however, is hardly affected. Moreover, the same flavonoids tend to stimulate macrocolony and submerged biofilm formation by Pseudomonas aeruginosa. For Bacillus subtilis, the flavonone naringenin and the chalcone phloretin were found to inhibit growth. Thus, plant flavonoids are not general anti-biofilm compounds but show species-specific effects. However, based on their strong and direct anti-amyloidogenic activities, distinct plant flavonoids may provide an attractive strategy to specifically combat amyloid-based biofilms of some relevant pathogens.
Collapse
Affiliation(s)
- Mihaela Pruteanu
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | | | - Thomas Stach
- Institut für Biologie/Zoologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| |
Collapse
|