1
|
Liu X, Li D, Zhang Y, Liu H, Chen P, Zhao Y, Sun G, Zhao W, Dong G. Multi-Algorithm-Integrated Tertiary Lymphoid Structure Gene Signature for Immune Landscape Characterization and Prognosis in Colorectal Cancer Patients. Biomedicines 2024; 12:2644. [PMID: 39595209 PMCID: PMC11592260 DOI: 10.3390/biomedicines12112644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
PURPOSE Colorectal cancer (CRC) is a common malignancy with a low survival rate as well as a low response rate to immunotherapy. This study aims to develop a risk model based on tertiary lymphoid structure (TLS)-associated gene signatures to enhance predictions of prognosis and immunotherapy response. METHODS TLS-associated gene data were obtained from TCGA-CRC and GEO cohorts. A comprehensive analysis using univariate Cox regression identified TLS-associated genes with significant prognostic implications. Subsequently, multiple algorithms were employed to select the most influential genes, and a stepwise Cox regression model was constructed. The model's predictive performance was validated using independent datasets (GSE39582, GSE17536, and GSE38832). To further investigate the immune microenvironment, immune cell infiltration in high-risk (HRG) and low-risk (LRG) groups was assessed using the CIBERSORT and ssGSEA algorithms. Additionally, we evaluated the model's potential to predict immune checkpoint blockade therapy response using data from The Cancer Imaging Archive, the TIDE algorithm, and external immunotherapy cohorts (GSE35640, GSE78200, and PRJEB23709). Immunohistochemistry (IHC) was employed to characterize TLS presence and CCL2 gene expression. RESULTS A three-gene (CCL2, PDCD1, and ICOS) TLS-associated model was identified as strongly associated with prognosis and demonstrated predictive power for CRC patient outcomes and immunotherapy efficacy. Notably, patients in the low-risk group (LRG) had a higher overall survival rate as well as a higher re-response rate to immunotherapy compared to the high-risk group (HRG). Finally, IHC results confirmed significantly elevated CCL2 expression in the TLS regions. CONCLUSIONS The multi-algorithm-integrated model demonstrated robust performance in predicting patient prognosis and immunotherapy response, offering a novel perspective for assessing immunotherapy efficacy. CCL2 may function as a TLS modulator and holds potential as a therapeutic target in CRC.
Collapse
Affiliation(s)
- Xianqiang Liu
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Dingchang Li
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yue Zhang
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
| | - Hao Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Guanchao Sun
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
| | - Wen Zhao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Guanglong Dong
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
2
|
Xu D, Han S, Yue X, Xu X, Huang T. METTL14 Suppresses Tumor Stemness and Metastasis of Colon Cancer Cells by Modulating m6A-Modified SCD1. Mol Biotechnol 2024; 66:2095-2105. [PMID: 37592151 DOI: 10.1007/s12033-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Colon cancer (CC) is a malignant disease of the digestive tract, and its rising prevalence poses a grave threat to people's health. N6-methyladenosine (m6A) modification is essential for various crucial life processes through modulating gene expression. Methyltransferase-like 14 (METTL14), the m6A methylation transferase core protein, and its aberrant expression is intimately correlated to tumor development. This study was conducted to probe the impacts and specific mechanisms of METTL14 on the biological process of CC. Bioinformatics data disclosed that METTL14 was significantly attenuated in CC. Functional assays were executed to ascertain how METTL14 affected CC tumorigenicity, and METTL14 overexpression caused a notable decline in viability, migration, invasion, and stemness phenotype of CC cells. Then, in-depth mechanistic studies displayed that stearoyl-CoA desaturase 1 (SCD1) was a downstream target gene of METTL14-mediated m6A modification. METTL14 overexpression substantially augmented the m6A modification of SCD1 mRNA and diminished the SCD1 mRNA level. In addition, we revealed that YTHDF2 was the m6A reader to recognize METTL14 m6A-modified SCD1 mRNA and abolish its stability. Finally, we also validated that METTL14 might impede the tumorigenic process of CC through SCD1 mediated Wnt/β-catenin signaling. Taken together, this study presented that METTL14 performed as a potential therapeutic target in CC with important implications for the prognosis amelioration of CC patients.
Collapse
Affiliation(s)
- Dehua Xu
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Shuguang Han
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Xiaoguang Yue
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Xiangyu Xu
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Tieao Huang
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China.
| |
Collapse
|
3
|
Mustafa MS, Shafique MA, Tabassum M, Rahman HAU, Syed AM, Kumar K, Haseeb A. Efficacy and safety of intravenous lidocaine infusion in postoperative pain management and surgical outcomes following laparoscopic colorectal surgery: A meta-analysis. Curr Probl Surg 2024; 61:101544. [PMID: 39098330 DOI: 10.1016/j.cpsurg.2024.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 08/06/2024]
Affiliation(s)
| | | | - Muzainah Tabassum
- Department of Surgery, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | | | - Aina Marzia Syed
- Department of Surgery, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Karan Kumar
- Department of Surgery, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Abdul Haseeb
- Department of Surgery, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| |
Collapse
|
4
|
Feng Y, Yang J, Wang Y, Wang X, Ma Q, Li Y, Zhang X, Wang S, Zhang Q, Mi F, Wang Y, Zhong D, Yin J. Cafestol inhibits colon cancer cell proliferation and tumor growth in xenograft mice by activating LKB1/AMPK/ULK1-dependent autophagy. J Nutr Biochem 2024; 129:109623. [PMID: 38492819 DOI: 10.1016/j.jnutbio.2024.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Chemotherapy failure in colorectal cancer patients is the major cause of recurrence and poor prognosis. As a result, there is an urgent need to develop drugs that have a good chemotherapy effect while also being extremely safe. In this study, we found cafestol inhibited colon cancer growth and HCT116 proliferation in vivo and in vitro, and improved the composition of intestinal flora. Further metabolomic data showed that autophagy and AMPK pathways were involved in the process of cafestol's anti-colon cancer effects. The functional validation studies revealed that cafestol increased autophagy vesicles and LC3B-II levels. The autophagic flux induced by cafestol was prevented by using BafA1. The autophagy inhibitor 3-MA blocked the cafestol-induced increase in LC3B-II and cell proliferation inhibition. Then we found that cafestol induced the increased expressions of LKB1, AMPK, ULK1, p-LKB1, p-AMPK, and p-ULK1 proteins in vivo and in vitro. Using the siRNA targeted to the Lkb1 gene, the levels of AMPK, ULK1, and LC3B-II were suppressed under cafestol treatment. These results indicated that the effect of cafestol is through regulating LKB1/AMPK/ULK1 pathway-mediated autophagic death. Finally, a correlation matrix of the microbiome and autophagy-related proteins was conducted. We found that cafestol-induced autophagic protein expression was positively correlated with the beneficial intestinal bacteria (Muribaculaceae, Bacteroides, Prevotellacece, and Alloprevotella) and negatively correlated with the hazardous bacteria. Conclusions: This study found that cafestol inhibited colon cancer in vitro and in vivo by the mechanism that may be related to LKB1/AMPK/ULK1 pathway-mediated autophagic cell death and improved intestinal microenvironment.
Collapse
Affiliation(s)
- Yuemei Feng
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China; Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, China; Key Laboratory of Public Health & Disease Prevention and Control of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China.
| | - JiZhuo Yang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China; Department of prevention and health care, Guiyang Second People's Hospital, Guiyang, China
| | - Yihan Wang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China; Department of Nutrition, Weifang Second People's Hospital, Weifang, China
| | - Xue Wang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Qian Ma
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Yalin Li
- Department of Gastroenterology, Yunnan First People's Hospital, Kunming, China
| | - Xuehui Zhang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Songmei Wang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Qiao Zhang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Fei Mi
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Yanjiao Wang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Dubo Zhong
- Yunnan Yunce Quality Testing Co., Ltd, Kunming, China.
| | - Jianzhong Yin
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China; Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, China; Baoshan College of Traditional Chinese Medicine, Baoshan, China.
| |
Collapse
|
5
|
Shnaikat SG, Shakya AK, Bardaweel SK. Formulation, development and evaluation of hyaluronic acid-conjugated liposomal nanoparticles loaded with regorafenib and curcumin and their in vitro evaluation on colorectal cancer cell lines. Saudi Pharm J 2024; 32:102099. [PMID: 38817822 PMCID: PMC11135027 DOI: 10.1016/j.jsps.2024.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024] Open
Abstract
Colorectal cancer is one of the major causes of global cancer, with chemotherapy and radiation therapy being effective but limited due to low specificity. Regorafenib, a multikinase inhibitor, provides hope to patients with metastatic colorectal cancer and was approved by the FDA in 2012. However, due to resistance issues and adverse events, its efficacy is compromised, necessitating further refinement. Meanwhile, curcumin, a compound of turmeric, exhibits anticancer effects through antioxidant and anti-inflammatory actions, induction of the apoptosis, arrest of cell cycle, inhibition of angiogenesis, and modulation of signaling pathways. Unfortunately, its clinical utility is limited by its poor bioavailability, pointing towards innovative drug delivery strategies for enhanced efficacy in colorectal cancer treatment. Hyaluronic acid (HA)-decorated liposomes (LIPO) have been developed to target colorectal cells through an overexpressed CD44 receptor, increasing antitumor and antimetastasis efficacy. This study investigates the possibility of loading curcumin (CUR) or regorafenib (REGO) into a liposomal formulation for passive and HA-actively targeted treatment, evaluating its critical quality attributes (CQA) (size, zeta potential, polydispersity index) and cytotoxic activity in the HT29 colorectal cancer cell line. The average particle size of the plain liposomes and those decorated with HA was 144.00 ± 0.78 nm and 140.77 ± 1.64 nm, respectively. In contrast, curcumin-loaded plain liposomes and HA-decorated liposomes had 140 ± 2.46 nm and 164.53 ± 15.13 nm, respectively. The prepared liposomes had a spherical shape with a narrow size distribution and an acceptable zeta potential of less than -30 mV. The encapsulation efficiency was 99.2 % ± 0.3 and 99.9 ± 0.2 % for HA-decorated and bare regorafenib loaded. The % EE was 98.9 ± 0.2 % and 97.5 ± 0.2 % for bare liposomal nanoparticles loaded with curcumin and coated with curcumin. The IC50 of free REGO, CUR, REGO-LIPO, CUR-LIPO, REGO-LIPO-HA and CUR-LIPO-HA were 20.17 ± 0.78, 64.4 ± 0.33, 224.8 ± 0.06, 49.66 ± 0.22, 73.66 ± 0.6, and 27.86 ± 0.49 µM, respectively. The MTT assay in HT29 cells showed significant cytotoxic activity of the HA-decorated liposomal formulation compared to the base uncoated formulation, indicating that hyaluronic acid-targeted liposomes loaded with regorafenib or curcumin could be a promising targeted formulation against colorectal cancer cells.
Collapse
Affiliation(s)
| | - Ashok K. Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | |
Collapse
|
6
|
Liang R, Li P, Yang N, Xiao X, Gong J, Zhang X, Bai Y, Chen Y, Xie Z, Liao Q. Parabacteroides distasonis-Derived Outer Membrane Vesicles Enhance Antitumor Immunity Against Colon Tumors by Modulating CXCL10 and CD8 + T Cells. Drug Des Devel Ther 2024; 18:1833-1853. [PMID: 38828018 PMCID: PMC11144014 DOI: 10.2147/dddt.s457338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Given the potent immunostimulatory effects of bacterial outer membrane vesicles (OMVs) and the significant anti-colon tumor properties of Parabacteroides distasonis (Pd), this study aimed to elucidate the role and potential mechanisms of Pd-derived OMVs (Pd-OMVs) against colon cancer. Methods This study isolated and purified Pd-OMVs from Pd cultures and assessed their characteristics. The effects of Pd-OMVs on CT26 cell uptake, proliferation, and invasion were investigated in vitro. In vivo, a CT26 colon tumor model was used to investigate the anti-colon tumor effects and underlying mechanisms of Pd-OMVs. Finally, we evaluated the biosafety of Pd-OMVs. Results Purified Pd-OMVs had a uniform cup-shaped structure with an average size of 165.5 nm and a zeta potential of approximately -9.56 mV, and their proteins were associated with pathways related to immunity and apoptosis. In vitro experiments demonstrated that CT26 cells internalized the Pd-OMVs, resulting in a significant decrease in their proliferation and invasion abilities. Further in vivo studies confirmed the accumulation of Pd-OMVs in tumor tissues, which significantly inhibited the growth of colon tumors. Mechanistically, Pd-OMVs increased the expression of CXCL10, promoting infiltration of CD8+ T cells into tumor tissues and expression of pro-inflammatory factors TNF-α, IL-1β, and IL-6. Notably, Pd-OMVs demonstrated a high level of biosafety. Conclusion This paper elucidates that Pd-OMVs can exert significant anti-colon tumor effects by upregulating the expression of the chemokine CXCL10, thereby increasing the infiltration of CD8+ T cells into tumors and enhancing antitumor immune responses. This suggests that Pd-OMVs may be developed as a novel nanoscale potent immunostimulant with great potential for application in tumor immunotherapy. As well as developed as a novel nano-delivery carrier for combination with other antitumor drugs.
Collapse
Affiliation(s)
- Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yunuan Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
7
|
Chai Y, Liu JL, Zhang S, Li N, Xu DQ, Liu WJ, Fu RJ, Tang YP. The effective combination therapies with irinotecan for colorectal cancer. Front Pharmacol 2024; 15:1356708. [PMID: 38375031 PMCID: PMC10875015 DOI: 10.3389/fphar.2024.1356708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Colorectal cancer is the third most common type of cancer worldwide and has become one of the major human disease burdens. In clinical practice, the treatment of colorectal cancer has been closely related to the use of irinotecan. Irinotecan combines with many other anticancer drugs and has a broader range of drug combinations. Combination therapy is one of the most important means of improving anti-tumor efficacy and overcoming drug resistance. Reasonable combination therapy can lead to better patient treatment options, and inappropriate combination therapy will increase patient risk. For the colorectal therapeutic field, the significance of combination therapy is to improve the efficacy, reduce the adverse effects, and improve the ease of treatment. Therefore, we explored the clinical advantages of its combination therapy based on mechanism or metabolism and reviewed the rationale basis and its limitations in conducting exploratory clinical trials on irinotecan combination therapy, including the results of clinical trials on the combination potentiation of cytotoxic drugs, targeted agents, and herbal medicine. We hope that these can evoke more efforts to conduct irinotecan in the laboratory for further studies and evaluations, as well as the possibility of more in-depth development in future clinical trials.
Collapse
Affiliation(s)
- Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jing-Li Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Shuo Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
8
|
Chen L, Wang F, Zhang H, Cao B. Exploring potential causal associations between autoimmune diseases and colorectal cancer using bidirectional Mendelian randomization. Sci Rep 2024; 14:1557. [PMID: 38238429 PMCID: PMC10796354 DOI: 10.1038/s41598-024-51903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Several observational studies have revealed an association between autoimmune diseases (AIDs) and colorectal cancer (CRC), although their causal association remained controversial. Therefore, our study used a two-sample Mendelian randomization (MR) analysis to verify the causal association between AIDs and CRC. We employed three common MR approaches, including inverse variance weighted (IVW), weighted median, and MR-Egger methods, to assess the causal association between type 1 diabetes (T1D), systemic lupus erythematosus, rheumatoid arthritis, psoriasis, multiple sclerosis, juvenile idiopathic arthritis, celiac disease, and primary sclerosing cholangitis (PSC) and CRC. The reverse MR analysis was performed to assess the possibility of reverse causation. To evaluate the validity of the analysis, we also performed sensitivity analysis, such as the heterogeneity test, the horizontal pleiotropy test, and the leave-one-out sensitivity analysis, and validated the results in the validation cohort. Our results showed that genetically predicted T1D was nominally associated with a lower risk of CRC (IVW OR = 0.965, 95% CI = 0.939-0.992, P = 0.012). However, genetic susceptibility to psoriasis nominally increased the risk of CRC (IVW OR = 1.026, 95% CI = 1.002-1.050, P = 0.037). Genetically predicted PSC had a significant causal effect on the increasing risk of CRC (IVW OR = 1.038, 95% CI = 1.016-1.060, P = 5.85 × 10-4). Furthermore, the MR analysis between PSC and the CRC validation cohort indicated consistent results. We found no causal association between genetically predicted other five AIDs and CRC (P > 0.05). The results of reverse MR analysis showed that genetically predicted CRC had no causal effect on T1D, psoriasis, and PSC (P > 0.05). The sensitivity analysis demonstrated that the results of the MR analysis were reliable. Our findings help to understand the causal association between AIDs and CRC, which deserves further investigation.
Collapse
Affiliation(s)
- Lu Chen
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China
| | - Feifan Wang
- Gastrointestinal Disease Diagnosis and Treatment Center, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
9
|
Li J, Wu Y, Zhang D, Zhang Z, Li S, Cheng X, Chen L, Zhou G, Yuan C. The Roles of Cytoplasmic Polyadenylation Element Binding Protein 1 in Tumorigenesis. Mini Rev Med Chem 2024; 24:2008-2018. [PMID: 38879767 DOI: 10.2174/0113895575293544240605112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND CPEB1 is an alternative polyadenylation binding protein that promotes or suppresses the expression of related mRNAs and proteins by binding to a highly conserved Cytoplasmic Polyadenylation Element (CPE) in the mRNAs 3'UTR. It is found to express abnormally in multiple tumors and affect tumorigenesis through many pathways. This review summarizes the functions and mechanisms of CPEB1 in a variety of cancers and suggests new directions for future related treatments. METHODS A total of 95 articles were eligible for inclusion based on the year, quality of the research, and the strength of association with CPEB1. In this review, current research about how CPEB1 affects the initiation and progression of glioblastoma, breast cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, non-small cell lung cancer, prostate cancer, and melanoma are dissected, and the biomedical functions and mechanisms are summarized. RESULTS CPEB1 mostly presents as a tumor suppressor for breast cancer, endometrial carcinoma, hepatocellular carcinoma, non-small cell lung cancer, prostate cancer, and melanoma. However, for glioblastoma, gastric cancer, and colorectal cancer, CPEB1 exhibts two opposing properties of tumorigenesis, either promoting or inhibiting it. CONCLUSION CPEB1 is likely to serve as a target and dynamic detection index or prognostic indicator for its function of apoptosis, activity, proliferation, migration, invasion, stemness, drug resistance, and even ferroptosis in various cancers.
Collapse
Affiliation(s)
- JiaYi Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Yinxin Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Dingyin Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Ziyan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Songqiang Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Xi Cheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Lihan Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| |
Collapse
|
10
|
Liao P, Chen LM, Huang WH, Zhou S, Ma M. Association of clinical characteristics and recurrence of conventional colorectal adenomas with patient age: a single-center study. Surg Endosc 2023; 37:8373-8383. [PMID: 37704793 DOI: 10.1007/s00464-023-10352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/30/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVES We performed a clinical study comparing early-onset and late-onset conventional colorectal adenomas (CCRAs) since little is known about the differences in their characteristics. METHODS Pearson's chi-square test and the Kruskal‒Wallis test were used to compare basic information. MCAR tests and multiple imputation were performed to complete missing values. Multivariate logistic analysis and propensity score matching were used to identify the risk factors for recurrence. RESULTS We included 2793 patients (688 with early-onset CCRAs and 2105 with late-onset CCRAs) from January 2017 to December 2021. Patients with early-onset CCRAs had higher levels of Hb, ALB, and triglycerides but lower HDL levels and N/L ratios. Moreover, we found that more early-onset CCRAs were in the left colon than late-onset CCRAs, and the size of early-onset CCRAs was larger. Early-onset CCRAs tended to lack pedicles compared to late-onset CCRAs. Additionally, the ratio of EMR and APC in early-onset CCRAs was higher than that in late-onset CCRAs, and the ratio of ESD and surgery for late-onset CCRAs was higher. We found that age ≥ 50 years, abnormal vessels, drinking alcohol, and DB and ALB levels may be risk factors for recurrence, while the LDL level may be a protective factor. Finally, analysis of cumulative recurrence rates after PSM showed that patients with late-onset CCRAs exhibited higher recurrence rates (P < 0.05). CONCLUSION Compared with late-onset CCRAs, early-onset CCRAs were associated with higher triglyceride levels, lower HDL levels, and larger tumor volumes. Age ≥ 50 years, abnormal vessels, alcohol consumption, and DB and ALB levels were independent risk factors for recurrence of CCRAs.
Collapse
Affiliation(s)
- Peng Liao
- Department of Integration of Traditional Chinese and Western Medicine and Anorectum, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Ming Chen
- Department of Rheumatology and Immunology Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wu-Hua Huang
- Department of Integration of Traditional Chinese and Western Medicine and Anorectum, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sheng Zhou
- Medical College of Nanchang University, Nanchang, China
| | - Mingyun Ma
- Prevention and Treatment Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
11
|
Ziyang T, Xirong H, Chongming A, Tingxin L. The potential molecular pathways of Astragaloside-IV in colorectal cancer: A systematic review. Biomed Pharmacother 2023; 167:115625. [PMID: 37793276 DOI: 10.1016/j.biopha.2023.115625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023] Open
Abstract
Astragaloside IV (AS-IV), a traditional Chinese medicine, is often used to treat cancer. Colorectal cancer imposes a heavy burden on patients and society. It is essential to update the clinical evidence supporting AS-IV in the treatment of colorectal cancer. The purpose of this review is to systematically evaluate the molecular pathway and safety of AS-IV in colorectal cancer. 7 databases were queried for Jan 2012-Dec 2022. A total of 37 related articles were retrieved. 8 papers were included to evaluate the role of AS-IV in colorectal cancer and make a review. AS-IV plays vital roles in colorectal cancer, especially in the suppression of proliferation, inducing tumor cell apoptosis, increasing immune function and reducing drug resistance. Furthermore, AS-IV has been proved to regulate many signaling pathways, which are usually affected by most cancers. However, a large-scale and well-designed multicenter randomized controlled study ensures that the safety and optimal dose of AS-IV will be determined in the future.
Collapse
Affiliation(s)
- Tang Ziyang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, Chengdu, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Hu Xirong
- Faculty of Nursing, Xi'an Jiaotong University, Xi'an, PR China
| | - An Chongming
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, Chengdu, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| | - Li Tingxin
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, Chengdu, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| |
Collapse
|
12
|
Blachman A, Birocco AM, Curcio S, Camperi SA, Gianvincenzo PD, Rodriguez JA, Barredo-Vacchelli GR, Cenci G, Sosnik A, Moya S, Calabrese GC. Dermatan Sulfate/Chitosan Nanoparticles Loaded with an Anti-Inflammatory Peptide Increase the Response of Human Colorectal Cancer Cells to 5-Fluorouracil. Macromol Biosci 2023; 23:e2300193. [PMID: 37469233 DOI: 10.1002/mabi.202300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
The gold standard drug for colorectal cancer (CRC) treatment, 5-Fluorouracil (5-FU), induces pharmacological tolerance in long-term management. The transcriptional factor nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) plays a key role in 5-FU resistance. The aim of this work is to study the capability of polyelectrolytes complex nanoparticles of dermatan sulfate (DS) and chitosan (CS), loaded with the anti-inflammatory tripeptide IRW, to sensitize colorectal cancer cells to 5-FU. Fluorescence and flow cytometry studies confirmed the recognition by the nanoformulation, of the cluster of differentiation 44 (CD44) receptor, involved in the initiation and progression of colorectal tumors. Dynamic light scattering (DLS) and flow cytometry reinforced the importance of DS and CD44 receptor in the interaction, as the addition of DS or anti-CD44 antibody blocked the binding. Moreover, the nanoformulation also interacts with 3D colon cancer cultures, namely colonospheres, enriched in cancer stem cells (CSC), subpopulation responsible for drug resistance and metastasis. To evaluate the consequences of this interaction, the subcellular distribution of the transcriptional factor NFκB, is determined by immunofluorescence analysis. Internalization and the intracellular release of IRW inhibited nuclear translocation of NFκB and increased cellular sensitivity to 5-FU. Altogether, the nanoformulation could provide a selective delivery platform for IRW distribution to colorectal tumors, being an innovative strategy toward overcoming 5-FU resistance in CRC therapy.
Collapse
Affiliation(s)
- Agustín Blachman
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Ariadna María Birocco
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Sofía Curcio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Andrea Camperi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Paolo Di Gianvincenzo
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia, San Sebastián, 20014, Spain
| | - Jésica Ayelén Rodriguez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Romina Barredo-Vacchelli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gloria Cenci
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia, San Sebastián, 20014, Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Sergio Moya
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia, San Sebastián, 20014, Spain
| | - Graciela Cristina Calabrese
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
13
|
Shao H, Yao L, Tao Y, Huang X. Identification and verification of an exosome-related gene risk model to predict prognosis and evaluate immune infiltration for colorectal cancer. Medicine (Baltimore) 2023; 102:e35365. [PMID: 37800824 PMCID: PMC10553194 DOI: 10.1097/md.0000000000035365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor that severely endangers human health. Exosomes show great potential in tumor immunotherapy. Increasingly studies have shown that exosome-related genes are effective prognostic biomarkers. Clinical information and gene expression data of CRC patients were obtained from gene expression omnibus and the cancer genome atlas. The data were then classified into training and independent validation sets. In the training set, exosome-related genes with a prognostic value were selected by univariate Cox analysis, least absolute shrinkage and selection operator Cox regression model, and stepwise Cox regression analysis. Risk scores were calculated based on the selected genes to stratify patients. The selected exosome-related genes were applied to establish a risk model. Based on 11 exosome-related genes, a prognostic risk model, which could stratify the risk both in the training and validation sets, was established. According to the survival curves, the prognoses of the high- and low-risk groups were significantly different. The AUCs of the risk model for prognostic prediction were 0.735 and 0.784 in the training and validation sets, respectively. A nomogram was constructed to predict the survival of CRC patients. Single-sample gene set enrichment analysis and ESTIMATE algorithms revealed that the risk model was related to immune cell infiltration. The value of the risk model in predicting immunotherapeutic outcomes was also confirmed. An exosome-related gene risk model was constructed to predict prognosis, evaluate microenvironment immune cell infiltration levels and bring a new perspective to CRC patient treatment.
Collapse
Affiliation(s)
- Huan Shao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Li Yao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Ye Tao
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
14
|
Huang H, Li T, Meng Z, Zhang X, Jiang S, Suo M, Li N. A Risk Model for Prognosis and Treatment Response Prediction in Colon Adenocarcinoma Based on Genes Associated with the Characteristics of the Epithelial-Mesenchymal Transition. Int J Mol Sci 2023; 24:13206. [PMID: 37686013 PMCID: PMC10488217 DOI: 10.3390/ijms241713206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is an important process during metastasis in various tumors, including colorectal cancer (CRC). Thus, the study of its characteristics and related genes is of great significance for CRC treatment. In this study, 26 EMT-related gene sets were used to score each sample from The Cancer Genome Atlas program (TCGA) colon adenocarcinoma (COAD) database. Based on the 26 EMT enrichment scores for each sample, we performed unsupervised cluster analysis and classified the TCGA-COAD samples into three EMT clusters. Then, weighted gene co-expression network analysis (WGCNA) was used to investigate the gene modules that were significantly associated with these three EMT clusters. Two gene modules that were strongly positively correlated with the EMT cluster 2 (worst prognosis) were subjected to Cox regression and least absolute shrinkage and selection operator (LASSO) regression analysis. Then, a prognosis-related risk model composed of three hub genes GPRC5B, LSAMP, and PDGFRA was established. The TCGA rectal adenocarcinoma (READ) dataset and a CRC dataset from the Gene Expression Omnibus (GEO) were used as the validation sets. A novel nomogram that incorporated the risk model and clinicopathological features was developed to predict the clinical outcomes of the COAD patients. The risk model served as an independent prognostic factor. It showed good predictive power for overall survival (OS), immunotherapy efficacy, and drug sensitivity in the COAD patients. Our study provides a comprehensive evaluation of the clinical relevance of this three-gene risk model for COAD patients and a deeper understanding of the role of EMT-related genes in COAD.
Collapse
Affiliation(s)
- Hongyu Huang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Tianyou Li
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ziqi Meng
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xueqian Zhang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shanshan Jiang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Mengying Suo
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Na Li
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin 300071, China
| |
Collapse
|
15
|
Jiang YL, Fu XY, Yin ZH. Retrospective efficacy analysis of olaparib combined with bevacizumab in the treatment of advanced colorectal cancer. World J Gastrointest Surg 2023; 15:906-916. [PMID: 37342840 PMCID: PMC10277937 DOI: 10.4240/wjgs.v15.i5.906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/11/2023] [Accepted: 04/07/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly prevalent malignancy of the digestive tract worldwide, characterized by a significant morbidity and mortality rate and subtle initial symptoms. Diarrhea, local abdominal pain, and hematochezia occur with the development of cancer, while systemic symptoms such as anemia and weight loss occur in patients with advanced CRC. Without timely interventions, the disease can have fatal consequences within a short span. The current therapeutic options for colon cancer include olaparib and bevacizumab, which are widely utilized. This study intends to evaluate the clinical efficacy of olaparib combined with bevacizumab in the treatment of advanced CRC, hoping to provide insights into advanced CRC treatment.
AIM To investigate the retrospective efficacy of olaparib combined with bevacizumab in the treatment of advanced CRC.
METHODS A retrospective analysis was conducted on a cohort of 82 patients with advanced colon cancer who were admitted to the First Affiliated Hospital of the University of South China between January 2018 and October 2019. Among them, 43 patients subjected to the classical FOLFOX chemotherapy regimen were selected as the control group, and 39 patients undergoing treatment with olaparib combined with bevacizumab were selected as the observation group. Subsequent to different treatment regimens, the short-term efficacy, time to progression (TTP), and incidence rate of adverse reactions between the two groups were compared. Changes in serum-related indicators [vascular endothelial growth factor (VEGF), matrix metalloprotein-9 (MMP-9), cyclooxygenase-2 (COX-2)] and tumor markers [human epididymis protein 4 (HE4), carbohydrate antigen 125 (CA125), carbohydrate antigen 199 (CA199)] levels before and after treatment were compared between the two groups at the same time.
RESULTS The objective response rate was discovered to be 82.05%, and the disease control rate was 97.44% in the observation group, which were significantly higher than the respective rates of 58.14% and 83.72% in the control group (P < 0.05). The median TTP was 24 mo (95%CI: 19.987-28.005) in the control group and 37 mo (95%CI: 30.854-43.870) in the observation group. The TTP in the observation group was significantly better than that in the control group, and the difference held statistical significance (log-rank test value = 5.009, P = 0.025). Before treatment, no substantial difference was detected in serum VEGF, MMP-9, and COX-2 levels and tumor markers HE4, CA125, and CA199 levels between the two groups (P > 0.05). Following treatment with different regimens, the above indicators in the two groups were remarkably promoted (P < 0.05), VEGF, MMP-9, and COX-2 in the observation group were lower than those in the control group (P < 0.05), and HE4, CA125, and CA199 levels were also lower than those in the control group (P < 0.05). Vis-à-vis the control group, the total incidence of gastrointestinal reactions, thrombosis, bone marrow suppression, liver and kidney function injury, and other adverse reactions in the observation group was notably lowered, with the difference considered statistically significant (P < 0.05).
CONCLUSION Olaparib combined with bevacizumab in the treatment of advanced CRC demonstrates a strong clinical effect of delaying disease progression and reducing the serum levels of VEGF, MMP-9, COX-2 and tumor markers HE4, CA125 and CA199. Moreover, given its fewer adverse reactions, it can be regarded as a safe and reliable treatment option.
Collapse
Affiliation(s)
- Yi-Ling Jiang
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Xue-Yuan Fu
- Department of Anorectal, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Zhi-Hui Yin
- Department of Anorectal, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| |
Collapse
|
16
|
Liu J, Meng Y, Li B, Wang P, Wan X, Huang W, Li R. Ferroptosis-related biotargets and network mechanisms of fucoidan against colorectal cancer: An integrated bioinformatic and experimental approach. Int J Biol Macromol 2022; 222:1522-1530. [DOI: 10.1016/j.ijbiomac.2022.09.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
|
17
|
Bioinformatic Analysis of the Effect of Silver Nanoparticles on Colorectal Cancer Cell Line. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6828837. [PMID: 35445138 PMCID: PMC9015850 DOI: 10.1155/2022/6828837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Colorectal cancer (CRC) is the most diagnosed cancer with the highest mortality rate each year globally. Although there are treatments for CRC, the development of resistance to therapies decreases the success of treatments. In vitro studies using the Caco-2 cell line have revealed the anticancer properties of silver nanoparticles (AgNPs) as a possible treatment for this disease. This study considered four researches that evaluated the proteomic profiles of cells of the Caco-2 line exposed to AgNPs. We performed a bioinformatics analysis to predict protein-protein interaction, hub genes, Gene Ontology (molecular function, biological process, and cellular components), KEGG pathways, analysis of expression, and immune cell infiltration. For these analyses, the STRING, DAVID, UALCAN, GEPIA2, and TISIDB databases were used. The results in Gene Ontology show that AgNPs cause a deregulation of genes related to cell-cell adhesion, the cytoplasm, the centriole, and carbon metabolism. Hub genes were identified, including GADPH, ENO1, EEF2, and ATP5A1, which showed differential expression in patients with adenocarcinoma of the colon and rectum. Additionally, the expression of the hub genes and immune cells was correlated. It was found that ATP5A1 and ENO1 were positively correlated with the infiltration of CD4+ T lymphocytes in colon adenocarcinoma and a negative correlation between GADPH and PDIA3 with the infiltration of NK cells and CD4+ T lymphocytes in rectal adenocarcinoma, respectively. In conclusion, the administration of AgNPs causes an alteration of biological processes, cellular components, metabolic pathways, deregulation of hub genes, and the activity of immune cells leading to a potential anticancer effect.
Collapse
|
18
|
Minciuna CE, Tanase M, Manuc TE, Tudor S, Herlea V, Dragomir MP, Calin GA, Vasilescu C. The seen and the unseen: Molecular classification and image based-analysis of gastrointestinal cancers. Comput Struct Biotechnol J 2022; 20:5065-5075. [PMID: 36187924 PMCID: PMC9489806 DOI: 10.1016/j.csbj.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Gastrointestinal cancers account for 22.5% of cancer related deaths worldwide and represent circa 20% of all cancers. In the last decades, we have witnessed a shift from histology-based to molecular-based classifications using genomic, epigenomic, and transcriptomic data. The molecular based classification revealed new prognostic markers and may aid the therapy selection. Because of the high-costs to perform a molecular classification, in recent years immunohistochemistry-based surrogate classification were developed which permit the stratification of patients, and in parallel multiple groups developed hematoxylin and eosin whole slide image analysis for sub-classifying these entities. Hence, we are witnessing a return to an image-based classification with the purpose to infer hidden information from routine histology images that would permit to detect the patients that respond to specific therapies and would be able to predict their outcome. In this review paper, we will discuss the current histological, molecular, and immunohistochemical classifications of the most common gastrointestinal cancers, gastric adenocarcinoma, and colorectal adenocarcinoma, and will present key aspects for developing a new artificial intelligence aided image-based classification of these malignancies.
Collapse
|
19
|
Liu Y, Li J, Zeng S, Zhang Y, Zhang Y, Jin Z, Liu S, Zou X. Bioinformatic Analyses and Experimental Verification Reveal that High FSTL3 Expression Promotes EMT via Fibronectin-1/α5β1 Interaction in Colorectal Cancer. Front Mol Biosci 2021; 8:762924. [PMID: 34901156 PMCID: PMC8652210 DOI: 10.3389/fmolb.2021.762924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a typical cancer prevalent worldwide. Despite the conventional treatments, CRC has a poor prognosis due to relapse and metastasis. Moreover, there is a dearth of sensitive biomarkers for predicting prognosis in CRC. Methods: This study used a bioinformatics approach combining validation experiments to examine the value of follistatin-like 3 (FSTL3) as a prognostic predictor and therapeutic target in CRC. Results:FSTL3 was remarkably upregulated in the CRC samples. FSTL3 overexpression was significantly associated with a poor prognosis. FSTL3 was found to activate the epithelial-mesenchymal transition by promoting the binding of FN1 to α5β1. FSTL3 expression was also positively correlated with the abundance of the potent immunosuppressors, M2 macrophages. Conclusion:FSTL3 overexpression affects CRC prognosis and thus, FSTL3 can be a prognostic biomarker and therapeutic target with potential applications in CRC.
Collapse
Affiliation(s)
- Yuanjie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiepin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Shuhong Zeng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yonghua Zhang
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Zhichao Jin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
20
|
Amedei A, Capasso C, Nannini G, Supuran CT. Microbiota, Bacterial Carbonic Anhydrases, and Modulators of Their Activity: Links to Human Diseases? Mediators Inflamm 2021; 2021:6926082. [PMID: 34803517 PMCID: PMC8601860 DOI: 10.1155/2021/6926082] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of the human microbiome is crucial for different host functions such as protection, metabolism, reproduction, and especially immunity. However, both endogenous and exogenous factors can affect the balance of the microbiota, creating a state of dysbiosis, which can start various gastrointestinal or systemic diseases. The challenge of future medicine is to remodel the intestinal microbiota to bring it back to healthy equilibrium (eubiosis) and, thus, counteract its negative role in the diseases' onset. The shaping of the microbiota is currently practiced in different ways ranging from diet (or use of prebiotics, probiotics, and synbiotics) to phage therapy and antibiotics, including microbiota fecal transplantation. Furthermore, because microbiota modulation is a capillary process, and because many microbiota bacteria (both beneficial and pathogenic) have carbonic anhydrases (specifically the four classes α, β, γ, and ι), we believe that the use of CA inhibitors and activators can open up new therapeutic strategies for many diseases associated with microbial dysbiosis, such as the various gastrointestinal disorders and the same colorectal cancer.
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
| | - Clemente Capasso
- CNR, Institute of Biosciences and Bioresources, 80131 Napoli, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | | |
Collapse
|
21
|
Synthesis, Cytotoxicity and Anti-Proliferative Activity Against AGS Cells of New 3(2 H)-Pyridazinone Derivatives Endowed with a Piperazinyl Linker. Pharmaceuticals (Basel) 2021; 14:ph14030183. [PMID: 33668893 PMCID: PMC7996573 DOI: 10.3390/ph14030183] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Novel twenty-three 3(2H)-pyridazinone derivatives were designed and synthesized based on the chemical requirements related to the anti-proliferative effects previously demonstrated within this scaffold. The introduction of a piperazinyl linker between the pyridazinone nucleus and the additional (un)substituted phenyl group led to some compounds endowed with a limited cytotoxicity against human gingival fibroblasts (HGFs) and good anti-proliferative effects against gastric adenocarcinoma cells (AGS) as evaluated by MTT and LDH assays, using doxorubicin as a positive control. Successive analyses revealed that the two most promising representative compounds (12 and 22) could exert their effects by inducing oxidative stress as demonstrated by the hydrogen peroxide release and the morphological changes (cell blebbing) revealed by light microscopy analysis after the haematoxylin-eosin staining. Moreover, to further assess the apoptotic process induced by compounds 12 and 22, Bax expression was measured by flow cytometry. These findings enlarged our knowledge of the structural requirements in this scaffold to display valuable biological effects against cancerous cell lines.
Collapse
|