1
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
2
|
Cao F, Liu XM, Wang X, Zhang YH, Yang J, Li W, Luo DQ, Liu YF. Structural diversity and biological activities of indole-diterpenoids from Penicillium janthinellum by co-culture with Paecilomyces formosus. Bioorg Chem 2023; 141:106863. [PMID: 37722269 DOI: 10.1016/j.bioorg.2023.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Co-culturing the marine-derived fungi Penicillium janthinellium with Paecilomyces formosus led to the isolation of nine new indole-diterpenes, janthinellumines A-I (1-9), along with twelve known analogues (10-21). The chemical structures including their absolute configurations of them were assigned by the analysis of extensive spectroscopic data and calculated ECD and VCD methods. These indole-diterpenoids displayed extensive biological activities, including anti-influenza A virus, protein tyrosine phosphatase (PTP) inhibitory, and anti-Vibrio activities. Among them, the anti-influenza mechanism of compounds 1, 2, and 7 was further investigated using neuraminidase inhibitory assay, molecular docking, and reverse genetics methods, suggesting that 1, 2, and 7 could interact with Arg371 of the viral neuraminidase. The structure-activity relationship (SAR) of PTPs inhibitory activity for indole-diterpene derivatives (1, 2, 4, 5, 9-16, and 19-21) was also summarized.
Collapse
Affiliation(s)
- Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China.
| | - Xue-Meng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China
| | - Xu Wang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China
| | - Ya-Hui Zhang
- College of Life Sciences, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Jie Yang
- Huanghua Branch of Beijing Computing Center Co., Ltd, Cangzhou 061108, China
| | - Wan Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China
| | - Du-Qiang Luo
- College of Life Sciences, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China.
| | - Yun-Feng Liu
- College of Life Sciences, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China; College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
3
|
Sala S, Micke SK, Flematti GR. Marine Natural Products from Flora and Fauna of the Western Australian Coast: Taxonomy, Isolation and Biological Activity. Molecules 2023; 28:molecules28031452. [PMID: 36771114 PMCID: PMC9919133 DOI: 10.3390/molecules28031452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Marine natural products occurring along the Western Australian coastline are the focus of this review. Western Australia covers one-third of the Australian coast, from tropical waters in the far north of the state to cooler temperate and Antarctic waters in the south. Over 40 years of research has resulted in the identification of a number of different types of secondary metabolites including terpenoids, alkaloids, polyketides, fatty acid derivatives, peptides and arsenic-containing natural products. Many of these compounds have been reported to display a variety of bioactivities. A description of the compound classes and their associated bioactivities from marine organisms found along the Western Australian coastline is presented.
Collapse
Affiliation(s)
- Samuele Sala
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Australian National Phenome Centre and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Scott K. Micke
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Gavin R. Flematti
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-64884461
| |
Collapse
|
4
|
Pang S, Guo ZG, Wang L, Guo QF, Cao F. Anti-IAV indole-diterpenoids from the marine-derived fungus Penicillium citrinum. Nat Prod Res 2023; 37:586-591. [PMID: 35608160 DOI: 10.1080/14786419.2022.2078820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new indole-diterpenoid, penijanthine E (1), and a known analogue (2), were obtained from the PDB culture of the marine-derived fungus Penicillium citrinum ZSS-9. The absolute configuration of 1 was elucidated by calculated TDDFT ECD and DP4plus calculations. The absolute configuration of 2 was confirmed by single-crystal X-ray diffraction analysis and TDDFT ECD calculations. Compounds 1 and 2 showed antiviral activity against influenza A virus (IAV) of A/WSN/33(H1N1) and A/PR/8/34(H1N1) strains with IC50 values ranging from 12.6 to 46.8 μM.
Collapse
Affiliation(s)
- Sen Pang
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Zhi-Gang Guo
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Li Wang
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Qing-Feng Guo
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Fei Cao
- Huanghe Science & Technology College, Zhengzhou, P.R. China.,College of Pharmaceutical Sciences, Hebei University, Baoding, P.R. China
| |
Collapse
|
5
|
Yang JY, Tang MM, Chen L, Lai XY, Zhuo X, Zhou XM, Chen GY. Study on the Secondary Metabolites of Endophytic Penicillium sclerotiorum HLL113. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Seipp K, Geske L, Opatz T. Marine Pyrrole Alkaloids. Mar Drugs 2021; 19:514. [PMID: 34564176 PMCID: PMC8471394 DOI: 10.3390/md19090514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Nitrogen heterocycles are essential parts of the chemical machinery of life and often reveal intriguing structures. They are not only widespread in terrestrial habitats but can also frequently be found as natural products in the marine environment. This review highlights the important class of marine pyrrole alkaloids, well-known for their diverse biological activities. A broad overview of the marine pyrrole alkaloids with a focus on their isolation, biological activities, chemical synthesis, and derivatization covering the decade from 2010 to 2020 is provided. With relevant structural subclasses categorized, this review shall provide a clear and timely synopsis of this area.
Collapse
Affiliation(s)
| | | | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10–14, 55128 Mainz, Germany; (K.S.); (L.G.)
| |
Collapse
|