1
|
Kaya B, Acar Çevik U, Çiftçi B, Duran HE, Türkeş C, Işık M, Bostancı HE, Kaplancıklı ZA, Beydemir Ş. Synthesis, α-Glucosidase, α-Amylase, and Aldol Reductase Inhibitory Activity with Molecular Docking Study of Novel Imidazo[1,2- a]pyridine Derivatives. ACS OMEGA 2024; 9:42905-42914. [PMID: 39464438 PMCID: PMC11500159 DOI: 10.1021/acsomega.4c05619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Inhibition ofaldose reductase (AR), α-glycosidase (α-GLY), and α-amylase (α-AMY) are some of the essential targets in diabetes mellitus (DM). Here, a series of imidazo[1,2-a]pyridine-based 1,3,4-thiadiazole derivatives (8a-k) were successfully synthesized and characterized using 1H NMR, 13C NMR, and HRMS spectroscopic techniques. The inhibition effects of the synthesized derivatives against AR, α-GLY, and α-AMY were evaluated using both in vitro and in silico methods. In vitro studies revealed that the derivatives (8a-k) showed significant inhibition activity. The results showed that the novel derivatives (8a-k) demonstrated potential inhibitory activity, with K I values covering the following ranges: 23.47 ± 2.40 to 139.60 ± 13.33 nM for AR and 6.09 ± 0.37 to 119.80 ± 12.31 μM for α-GLY, with IC50 values 81.14 to 153.51 μM for α-AMY. Furthermore, many of these compounds exhibited high inhibition activity, while some of them showed higher potency than the reference compounds. Molecular docking of the target compounds was carried out in the active sites of AR (PDB ID: 4JIR) and α-GLY (PDB ID: 5NN8).
Collapse
Affiliation(s)
- Betül Kaya
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Zonguldak Bulent Ecevit University, 67600 Zonguldak, Turkey
| | - Ulviye Acar Çevik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Bilge Çiftçi
- Vocational
School of Health Services, Bilecik Şeyh
Edebali University, 11230 Bilecik, Turkey
| | - Hatice Esra Duran
- Department
of Medical Biochemistry, Faculty of Medicine, Kafkas University, 36100 Kars, Turkey
| | - Cüneyt Türkeş
- Department
of Biochemistry, Faculty of Pharmacy, Erzincan
Binali Yıldırım University, 24002 Erzincan, Turkey
| | - Mesut Işık
- Department
of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - Hayrani Eren Bostancı
- Department
of Biochemistry, Faculty of Pharmacy, Sivas
Cumhuriyet University, 58140 Sivas, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Şükrü Beydemir
- Department
of Biochemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| |
Collapse
|
2
|
Yasir M, Park J, Han ET, Han JH, Park WS, Chun W. Investigating the Inhibitory Potential of Flavonoids against Aldose Reductase: Insights from Molecular Docking, Dynamics Simulations, and gmx_MMPBSA Analysis. Curr Issues Mol Biol 2024; 46:11503-11518. [PMID: 39451563 PMCID: PMC11506312 DOI: 10.3390/cimb46100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia, with aldose reductase playing a critical role in the pathophysiology of diabetic complications. This study aimed to investigate the efficacy of flavonoid compounds as potential aldose reductase inhibitors using a combination of molecular docking and molecular dynamics (MD) simulations. The three-dimensional structures of representative flavonoid compounds were obtained from PubChem, minimized, and docked against aldose reductase using Discovery Studio's CDocker module. The top 10 compounds Daidzein, Quercetin, Kaempferol, Butin, Genistein, Sterubin, Baicalein, Pulchellidin, Wogonin, and Biochanin_A were selected based on their lowest docking energy values for further analysis. Subsequent MD simulations over 100 ns revealed that Daidzein and Quercetin maintained the highest stability, forming multiple conventional hydrogen bonds and strong hydrophobic interactions, consistent with their favorable interaction energies and stable RMSD values. Comparative analysis of hydrogen bond interactions and RMSD profiles underscored the ligand stability. MMPBSA analysis further confirmed the significant binding affinities of Daidzein and Quercetin, highlighting their potential as aldose reductase inhibitors. This study highlights the potential of flavonoids as aldose reductase inhibitors, offering insights into their binding interactions and stability, which could contribute to developing novel therapeutics for DM complications.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
3
|
Yasir M, Park J, Chun W. Discovery of Novel Aldose Reductase Inhibitors via the Integration of Ligand-Based and Structure-Based Virtual Screening with Experimental Validation. ACS OMEGA 2024; 9:20338-20349. [PMID: 38737046 PMCID: PMC11079907 DOI: 10.1021/acsomega.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
Aldose reductase plays a central role in diabetes mellitus (DM) associated complications by converting glucose to sorbitol, resulting in a harmful increase of reactive oxygen species (ROS) in various tissues, such as the heart, vasculature, neurons, eyes, and kidneys. We employed a comprehensive approach, integrating both ligand- and structure-based virtual screening followed by experimental validation. Initially, candidate compounds were extracted from extensive drug and chemical libraries using the DeepChem's GraphConvMol algorithm, leveraging its capacity for robust molecular feature representation. Subsequent refinement employed molecular docking and molecular dynamics (MD) simulations, which are crucial for understanding compound-receptor interactions and dynamic behavior in a simulated physiological environment. Finally, the candidate compounds were subjected to experimental validation of their biological activity using an aldose reductase inhibitor screening kit. The comprehensive approach led to the identification of a promising compound, demonstrating significant potential as an aldose reductase inhibitor. This comprehensive approach not only yields a potential therapeutic intervention for DM-related complications but also establishes an integrated protocol for drug development, setting a new benchmark in the field.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| |
Collapse
|
4
|
Yang L, Xu L, Hao X, Song Z, Zhang X, Liu P, Wang S, He Z, Zou L. An aldose reductase inhibitor, WJ-39, ameliorates renal tubular injury in diabetic nephropathy by activating PINK1/Parkin signaling. Eur J Pharmacol 2024; 967:176376. [PMID: 38336014 DOI: 10.1016/j.ejphar.2024.176376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Renal tubular injury is a critical factor during the early stages of diabetic nephropathy (DN). Proximal tubular epithelial cells, which contain abundant mitochondria essential for intracellular homeostasis, are susceptible to disruptions in the intracellular environment, making them especially vulnerable to diabetic state disorders, which may be attributed to their elevated energy requirements and reliance on aerobic metabolism. It is widely thought that overactivation of the polyol pathway is implicated in DN pathogenesis, and inhibition of aldose reductase (AR), the rate-limiting enzyme in this pathway, represents a promising therapeutic avenue. WJ-39, a novel aldose reductase inhibitor, was investigated in this study for its protective effects on renal tubules in DN and the underlying mechanisms. Our findings revealed that WJ-39 significantly ameliorated the renal tubular morphology in high-fat diet (HFD)/streptozotocin (STZ)-induced DN rats, concurrently inhibiting fibrosis. Notably, WJ-39 safeguarded the structure and function of renal tubular mitochondria by enhancing mitochondrial dynamics. This involved the regulation of mitochondrial fission and fusion proteins and the promotion of PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy. Furthermore, WJ-39 demonstrated the inhibition of endogenous apoptosis by mitigating the production of mitochondrial reactive oxygen species (ROS). The protective effects of WJ-39 on mitochondria and apoptosis were countered in high glucose-treated HK-2 cells upon transfection with PINK1 siRNA. Overall, our findings suggest that WJ-39 protects the structural and functional integrity of renal tubules in DN, which may be attributed to its capacity to inhibit aldose reductase activity, activate the PINK1/Parkin signaling pathway, promote mitophagy, and alleviate apoptosis.
Collapse
Affiliation(s)
- Luxi Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Liangting Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Xin Hao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Zhixiao Song
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Xian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Shaojie Wang
- Department of Pharmacochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, China.
| | - Zhonggui He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| | - Libo Zou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| |
Collapse
|
5
|
Li L, Ling Z, Wang X, Zhang X, Li Y, Gao G. Proteomics-based screening of AKR1B1 as a therapeutic target and validation study for sepsis-associated acute kidney injury. PeerJ 2024; 12:e16709. [PMID: 38188141 PMCID: PMC10768659 DOI: 10.7717/peerj.16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Background Sepsis and sepsis-associated acute kidney injury (SA-AKI) pose significant global health challenges, necessitating the development of innovative therapeutic strategies. Dysregulated protein expression has been implicated in the initiation and progression of sepsis and SA-AKI. Identifying potential protein targets and modulating their expression is crucial for exploring alternative therapies. Method We established an SA-AKI rat model using cecum ligation perforation (CLP) and employed differential proteomic techniques to identify protein expression variations in kidney tissues. Aldose reductase (AKR1B1) emerged as a promising target. The SA-AKI rat model received treatment with the aldose reductase inhibitor (ARI), epalrestat. Blood urea nitrogen (BUN) and creatinine (CRE) levels, as well as IL-1β, IL-6 and TNF-α levels in the serum and kidney tissues, were monitored. Hematoxylin-eosin (H-E) staining and a pathological damage scoring scale assessed renal tissue damage, while protein blotting determined PKC (protein kinase C)/NF-κB pathway protein expression. Result Differential proteomics revealed significant downregulation of seven proteins and upregulation of 17 proteins in the SA-AKI rat model renal tissues. AKR1B1 protein expression was notably elevated, confirmed by Western blot. ARI prophylactic administration and ARI treatment groups exhibited reduced renal injury, low BUN and CRE levels and decreased IL-1β, IL-6 and TNF-α levels compared to the CLP group. These changes were statistically significant (P < 0.05). AKR1B1, PKC-α, and NF-κB protein expression levels were also lowered in the ARI prophylactic administration and ARI treatment groups compared to the CLP group (P < 0.05). Conclusions Epalrestat appeared to inhibit the PKC/NF-κB inflammatory pathway by inhibiting AKR1B1, resulting in reduced inflammatory cytokine levels in renal tissues and blood. This mitigated renal tissue injuries and improved the systemic inflammatory response in the severe sepsis rat model. Consequently, AKR1B1 holds promise as a target for treating sepsis-associated acute kidney injuries.
Collapse
Affiliation(s)
- Lei Li
- Intensive Care Unit, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Zaiqin Ling
- Department of Tubercular Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Xingsheng Wang
- Department of Emergency, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinxin Zhang
- Department of Emergency Medicine, Fuyang People’s Hospital of Anhui Medical University, Fuyang, China
| | - Yun Li
- Intensive Care Unit, Central Hospital Affliated to Shandong First Medical University, Jinan, China
| | - Guangsheng Gao
- Neurological Intensive Care Unit, Central Hospital Affliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Tokalı FS, Demir Y, Türkeş C, Dinçer B, Beydemir Ş. Novel acetic acid derivatives containing quinazolin-4(3H)-one ring: Synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors. Drug Dev Res 2023; 84:275-295. [PMID: 36598092 DOI: 10.1002/ddr.22031] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Aldose reductase (AR) is a crucial enzyme of the polyol pathway through which glucose is metabolized under conditions of hyperglycemia related to diabetes. A series of novel acetic acid derivatives containing quinazolin-4(3H)-one ring (1-22) was synthesized and tested for in vitro AR inhibitory effect. All the target compounds exhibited nanomolar activity against the target enzyme, and all compounds displayed higher activity as compared to the reference drug epalrestat. Among them, Compound 19, named 2-(4-[(2-[(4-methylpiperazin-1-yl)methyl]-4-oxoquinazolin-3(4H)-ylimino)methyl]phenoxy)acetic acid, displayed the strongest inhibitory effect with a KI value of 61.20 ± 10.18 nM. Additionally, these compounds were investigated for activity against L929, nontumoral fibroblast cells, and MCF-7, breast cancer cells using the MTT assay. Compounds 16 and 19 showed lower toxicity against the normal L929 cells. The synthesized compounds' (1-22) absorption, distribution, metabolism, and excretion properties were also evaluated. Molecular docking simulations were used to look into the possible binding mechanisms of these inhibitors against AR.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Büşra Dinçer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
7
|
Balestri F, Poli G, Piazza L, Cappiello M, Moschini R, Signore G, Tuccinardi T, Mura U, Del Corso A. Dissecting the Activity of Catechins as Incomplete Aldose Reductase Differential Inhibitors through Kinetic and Computational Approaches. BIOLOGY 2022; 11:biology11091324. [PMID: 36138801 PMCID: PMC9495972 DOI: 10.3390/biology11091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary The increased glucose levels occurring in diabetes lead to several metabolic alterations responsible for the onset of the so-called diabetic complications, which include nephropathies, neuropathies, retinopathies, and cataract. An increased flux of glucose through the polyol pathway is considered the most relevant among these alterations. For this reason, the block of the polyol pathway, through the inhibition of the enzyme aldose reductase, is considered a valuable strategy to impair the onset of diabetic complications. However, aldose reductase also exerts a beneficial effect inside cells, since it can remove toxic aldehydes. Thus, to ameliorate the outcome of the use of aldose reductase inhibitors, the use of “differential inhibitors” has been proposed. These inhibitors should block the catalytic activity depending on the substrate the enzyme is working on, thus preserving the detoxifying action of the enzyme. In this work, derivatives of catechins are analyzed to evaluate their inhibitory action on aldose reductase. The study was conducted both in vitro on the isolated enzyme and in silico through a computational approach. Results demonstrated that gallocatechin gallate and catechin gallate act as differential inhibitors and that this action may be linked to an incomplete inhibitory effect. Abstract The inhibition of aldose reductase is considered as a strategy to counteract the onset of both diabetic complications, upon the block of glucose conversion in the polyol pathway, and inflammation, upon the block of 3-glutathionyl-4-hydroxynonenal reduction. To ameliorate the outcome of aldose reductase inhibition, minimizing the interference with the detoxifying role of the enzyme when acting on toxic aldehydes, “differential inhibitors”, i.e., molecules able to inhibit the enzyme depending on the substrate the enzyme is working on, has been proposed. Here we report the characterization of different catechin derivatives as aldose reductase differential inhibitors. The study, conducted through both a kinetic and a computational approach, highlights structural constraints of catechin derivatives relevant in order to affect aldose reductase activity. Gallocatechin gallate and catechin gallate emerged as differential inhibitors of aldose reductase able to preferentially affect aldoses and 3-glutathionyl-4-hydroxynonenal reduction with respect to 4-hydroxynonenal reduction. Moreover, the results highlight how, in the case of aldose reductase, a substrate may affect not only the model of action of an inhibitor, but also the degree of incompleteness of the inhibitory action, thus contributing to differential inhibitory phenomena.
Collapse
Affiliation(s)
- Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 12, 56126 Pisa, Italy
| | - Lucia Piazza
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
| | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Giovanni Signore
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 12, 56126 Pisa, Italy
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2211450
| |
Collapse
|
8
|
Kılınç N. Resorcinol Derivatives as Novel Aldose Reductase Inhibitors: In Silico and
In Vitro Evaluation. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220414103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The polyol pathway, an alternative way of carbohydrate metabolism, is activated
by hyperglycemia. Aldose reductase (AR), the first and rate-limiting enzyme of the polyol pathway, is
responsible for the reduction of glucose to sorbitol. Inhibiting the aldose reductase enzyme and reducing
the polyol pathway is considered an effective method to prevent and postpone the onset of diabetic complications.
Objective:
Therefore, in this work, we investigate the inhibition effects of certain resorcinol derivatives
and the positive control compound quercetin on the AR enzyme in vitro and in silico. These phenolic
compounds, whose inhibitory effects on the AR enzyme were investigated, were also compared with
known drugs in terms of their drug-like characteristics.
Methods:
Three methods were used to determine the inhibitory effects of resorcinol derivatives on recombinant
human AR enzyme. After the in vitro inhibition effects were determined spectrophotometrically,
the binding energy and binding modes were determined by molecular docking method. Finally, the
MM-GBSA method was used to determine the free binding energies of the inhibitors for the AR enzyme.
Results:
5-pentylresorcinol compound showed the strongest inhibition effect on recombinant human AR
enzyme with an IC50 value of 9.90 μM. The IC50 values of resorcinol, 5-methylresorcinol, 4-
ethylresorcinol, 4-hexylresorcinol, 2-methylresorcinol, and 2,5-dimethylresorcinol compounds were determined
as 49.50 μM, 43.31 μM, 19.25 μM, 17.32 μM, 28.87 μM, 57.75 μM, respectively.
Conclusion:
The results of this research showed that resorcinol compounds are effective AR inhibitors.
These findings are supported by molecular docking, molecular mechanics, and ADME investigations
undertaken to corroborate the experimental in vitro results.
Collapse
Affiliation(s)
- Namık Kılınç
- Department of Medical Services and Techniques, Vocational School of Health Service, Igdir University, Igdir, Turkey
| |
Collapse
|
9
|
Bailly C. Moving toward a new horizon for the aldose reductase inhibitor epalrestat to treat drug-resistant cancer. Eur J Pharmacol 2022; 931:175191. [PMID: 35964660 DOI: 10.1016/j.ejphar.2022.175191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
Epalrestat (EPA) is a potent inhibitor of aldose reductases AKR1B1 and AKR1B10, used for decades in Japan for the treatment of diabetic peripheral neuropathy. This orally-active, brain-permeable small molecule, with a relatively rare and essential 2-thioxo-4-thiazolidinone motif, functions as a regulator intracellular carbonyl species. The repurposing of EPA for the treatment of pediatric rare diseases, brain disorders and cancer has been proposed. A detailed analysis of the mechanism of action, and the benefit of EPA to combat advanced malignancies is offered here. EPA has revealed marked anticancer activities, alone and in combination with cytotoxic chemotherapy and targeted therapeutics, in experimental models of liver, colon, and breast cancers. Through inhibition of AKR1B1 and/or AKR1B10 and blockade of the epithelial-mesenchymal transition, EPA largely enhances the sensitivity of cancer cells to drugs like doxorubicin and sorafenib. EPA has revealed a major anticancer effect in an experimental model of basal-like breast cancer and clinical trials have been developed in patients with triple-negative breast cancer. The repurposing of the drug to treat chemo-resistant solid tumors seems promising, but more studies are needed to define the best trajectory for the positioning of EPA in oncology.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
10
|
Yan L, Sundaram S, Rust BM, Picklo MJ, Bukowski MR. Metabolomes of Lewis lung carcinoma metastases and normal lung tissue from mice fed different diets. J Nutr Biochem 2022; 107:109051. [DOI: 10.1016/j.jnutbio.2022.109051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 04/17/2022] [Indexed: 12/20/2022]
|
11
|
Imran A, Shehzad MT, Shah SJA, Al Adhami T, Laws M, Rahman KM, Alharthy RD, Khan IA, Shafiq Z, Iqbal J. Development and exploration of novel substituted thiosemicarbazones as inhibitors of aldose reductase via in vitro analysis and computational study. Sci Rep 2022; 12:5734. [PMID: 35388067 PMCID: PMC8986850 DOI: 10.1038/s41598-022-09658-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
The role of aldose reductase (ALR2) in causing diabetic complications is well-studied, with overactivity of ALR2 in the hyperglycemic state leading to an accumulation of intracellular sorbitol, depletion of cytoplasmic NADPH and oxidative stress and causing a variety of different conditions including retinopathy, nephropathy, neuropathy and cardiovascular disorders. While previous efforts have sought to develop inhibitors of this enzyme in order to combat diabetic complications, non-selective inhibition of both ALR2 and the homologous enzyme aldehyde reductase (ALR1) has led to poor toxicity profiles, with no drugs targeting ALR2 currently approved for therapeutic use in the Western world. In the current study, we have synthesized a series of N-substituted thiosemicarbazones with added phenolic moieties, of which compound 3m displayed strong and selective ALR2 inhibitory activity in vitro (IC50 1.18 µM) as well as promising antioxidant activity (75.95% free radical scavenging activity). The target binding modes of 3m were studied via molecular docking studies and stable interactions with ALR2 were inferred through molecular dynamics simulations. We thus report the N-substituted thiosemicarbazones as promising drug candidates for selective inhibition of ALR2 and possible treatment of diabetic complications.
Collapse
Affiliation(s)
- Aqeel Imran
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.,Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.,School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | | | - Syed Jawad Ali Shah
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Taha Al Adhami
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Mark Laws
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Khondaker Miraz Rahman
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Rima D Alharthy
- Chemistry Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Imtiaz Ali Khan
- Department of Entomology, Agricultural University, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Jamshed Iqbal
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan. .,Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
12
|
Nivetha R, Arvindhvv S, Baba AB, Gade DR, Gopal G, K C, Kallamadi KPR, Reddy GB, Nagini S. Nimbolide, a Neem Limonoid, Inhibits Angiogenesis in Breast Cancer by Abrogating Aldose Reductase Mediated IGF-1/PI3K/Akt Signaling. Anticancer Agents Med Chem 2022; 22:2619-2636. [DOI: 10.2174/1871520622666220204115151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Background & Objectives:
There is growing evidence to implicate the insulin/IGF-1R/PI3K/Akt signaling cascade in breast cancer development and the central role of aldose reductase (AR) in mediating the crosstalk between this pathway and angiogenesis. The current study was designed to investigate whether nimbolide, a neem limonoid, targets this oncogenic signaling network to prevent angiogenesis in breast cancer.
Methods:
Breast cancer cells (MCF-7, MDA-MB-231), EAhy926 endothelial cells, MDA-MB-231 xenografted nude mice, and tumour tissues from breast cancer patients were used for the study. Expression of AR and key players in IGF-1/PI3K/Akt signaling and angiogenesis was evaluated by qRT-PCR, immunoblotting, and immunohistochemistry. Molecular docking and simulation, overexpression, and knockdown experiments were performed to determine whether nimbolide targets AR and IGF-1R
Results:
Nimbolide inhibited AR with consequent blockade of the IGF-1/PI3K/Akt and HIF-1/VEGF signaling circuit by influencing the phosphorylation and intracellular localisation of key signaling molecules. Downregulation of DNMT-1, HDAC-6, miR-21, HOTAIR, and H19 with upregulation of miR-148a/miR-152 indicated that nimbolide regulates AR and IGF-1/PI3K/Akt signaling via epigenetic modifications. Coadministration of nimbolide with metformin and the chemotherapeutic drugs tamoxifen/cisplatin displayed higher efficacy than single agents in inhibiting IGF-1/PI3K/Akt/AR signaling. Grade-wise increases in IGF-1R and AR expression in breast cancer tissues underscore their value as biomarkers of progression.
Conclusions:
This study provides evidence for the anticancer effects of nimbolide in cellular and mouse models of breast cancer besides providing leads for new drug combinations. It has also opened up avenues for investigating potential molecules such as AR for therapeutic targeting of cancer.
Collapse
Affiliation(s)
- Ramesh Nivetha
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| | - Soundararajan Arvindhvv
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| | - Abdul Basit Baba
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| | - Deepak Reddy Gade
- Centre for Molecular Cancer Research, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, India
| | - Gopisetty Gopal
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai 600020, Tamil Nadu, India
| | - Chitrathara K
- Department of Surgical & Gynecologic Oncology, VPS Lakeshore Hospital, Nettoor, Maradu, Kochi, Kerala 682040
| | | | - G. Bhanuprakash Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad-500007, India
| | - Siddavaram Nagini
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| |
Collapse
|
13
|
Chang KC, Liu PF, Chang CH, Lin YC, Chen YJ, Shu CW. The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell Biosci 2022; 12:1. [PMID: 34980273 PMCID: PMC8725349 DOI: 10.1186/s13578-021-00736-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress is mainly caused by intracellular reactive oxygen species (ROS) production, which is highly associated with normal physiological homeostasis and the pathogenesis of diseases, particularly ocular diseases. Autophagy is a self-clearance pathway that removes oxidized cellular components and regulates cellular ROS levels. ROS can modulate autophagy activity through transcriptional and posttranslational mechanisms. Autophagy further triggers transcription factor activation and degrades impaired organelles and proteins to eliminate excessive ROS in cells. Thus, autophagy may play an antioxidant role in protecting ocular cells from oxidative stress. Nevertheless, excessive autophagy may cause autophagic cell death. In this review, we summarize the mechanisms of interaction between ROS and autophagy and their roles in the pathogenesis of several ocular diseases, including glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and optic nerve atrophy, which are major causes of blindness. The autophagy modulators used to treat ocular diseases are further discussed. The findings of the studies reviewed here might shed light on the development and use of autophagy modulators for the future treatment of ocular diseases.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology and Neurobiology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hsuan Chang
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan
| | - Ying-Cheng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Ju Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan.
| |
Collapse
|
14
|
Bose C, Hindle A, Lee J, Kopel J, Tonk S, Palade PT, Singhal SS, Awasthi S, Singh SP. Anticancer Activity of Ω-6 Fatty Acids through Increased 4-HNE in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13246377. [PMID: 34944997 PMCID: PMC8699056 DOI: 10.3390/cancers13246377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Epidemiological evidence suggests that breast cancer risk is lowered by Ω-3 and increased by Ω-6 polyunsaturated fatty acids (PUFAs). Paradoxically, the Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE) inhibits cancer cell growth. This duality prompted us to study whether arachidonic acid (AA) would enhance doxorubicin (dox) cytotoxicity towards breast cancer cells. We found that supplementing AA or inhibiting 4-HNE metabolism potentiated doxorubicin (dox) toxicity toward Her2-dependent breast cancer but spared myocardial cells. Our results suggest that Ω-6 PUFAs could improve outcomes of dox chemotherapy in Her2-overexpressing breast cancer. Abstract Her2-amplified breast cancers resistant to available Her2-targeted therapeutics continue to be a challenge in breast cancer therapy. Dox is the mainstay of chemotherapy of all types of breast cancer, but its usefulness is limited by cumulative cardiotoxicity. Because oxidative stress caused by dox generates the pro-apoptotic Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE), we surmised that Ω-6 PUFAs would increase the effectiveness of dox chemotherapy. Since the mercapturic acid pathway enzyme RALBP1 (also known as RLIP76 or Rlip) that limits cellular accumulation of 4-HNE also mediates dox resistance, the combination of Ω-6 PUFAs and Rlip depletion could synergistically improve the efficacy of dox. Thus, we studied the effects of the Ω-6 PUFA arachidonic acid (AA) and Rlip knockdown on the antineoplastic activity of dox towards Her2-amplified breast cancer cell lines SK-BR-3, which is sensitive to Her2 inhibitors, and AU565, which is resistant. AA increased lipid peroxidation, 4-HNE generation, apoptosis, cellular dox concentration and dox cytotoxicity in both cell lines while sparing cultured immortalized cardiomyocyte cells. The known functions of Rlip including clathrin-dependent endocytosis and dox efflux were inhibited by AA. Our results support a model in which 4-HNE generated by AA overwhelms the capacity of Rlip to defend against apoptosis caused by dox or 4-HNE. We propose that Ω-6 PUFA supplementation could improve the efficacy of dox or Rlip inhibitors for treating Her2-amplified breast cancer.
Collapse
Affiliation(s)
- Chhanda Bose
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Ashly Hindle
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Jihyun Lee
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Jonathan Kopel
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Sahil Tonk
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Philip T. Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
- Medical Oncology Service, Doctors Hospital, 16 Middle Rd., George Town, Grand Cayman KY1-1104, Cayman Islands, UK
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-305-949-6066 (S.A.); +1-806-743-1540 (S.P.S.)
| | - Sharda P. Singh
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-305-949-6066 (S.A.); +1-806-743-1540 (S.P.S.)
| |
Collapse
|
15
|
Yan LJ. NADH/NAD + Redox Imbalance and Diabetic Kidney Disease. Biomolecules 2021; 11:biom11050730. [PMID: 34068842 PMCID: PMC8153586 DOI: 10.3390/biom11050730] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common and severe complication of diabetes mellitus. If left untreated, DKD can advance to end stage renal disease that requires either dialysis or kidney replacement. While numerous mechanisms underlie the pathogenesis of DKD, oxidative stress driven by NADH/NAD+ redox imbalance and mitochondrial dysfunction have been thought to be the major pathophysiological mechanism of DKD. In this review, the pathways that increase NADH generation and those that decrease NAD+ levels are overviewed. This is followed by discussion of the consequences of NADH/NAD+ redox imbalance including disruption of mitochondrial homeostasis and function. Approaches that can be applied to counteract DKD are then discussed, which include mitochondria-targeted antioxidants and mimetics of superoxide dismutase, caloric restriction, plant/herbal extracts or their isolated compounds. Finally, the review ends by pointing out that future studies are needed to dissect the role of each pathway involved in NADH-NAD+ metabolism so that novel strategies to restore NADH/NAD+ redox balance in the diabetic kidney could be designed to combat DKD.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|