1
|
Procaccianti G, Roggiani S, Conti G, Brigidi P, Turroni S, D’Amico F. Bifidobacterium in anticancer immunochemotherapy: friend or foe? MICROBIOME RESEARCH REPORTS 2023; 2:24. [PMID: 38046824 PMCID: PMC10688788 DOI: 10.20517/mrr.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 12/05/2023]
Abstract
The gut microbiome has received a crescendo of attention in recent years due to myriad influences on human pathophysiology, including cancer. Anticancer therapy research is constantly looking for new hints to improve response to therapy while reducing the risk of relapse. In this scenario, Bifidobacterium, which inhabits the gut microbial ecosystem (especially that of children) and is considered a health-associated microbe, has emerged as a key target to assist anticancer treatments for a better prognosis. However, some researchers have recently hypothesized an unfavorable role of Bifidobacterium spp. in anticancer immunochemotherapy, leading to some confusion in the field. This narrative review summarizes the current knowledge on the role of Bifidobacterium spp. in relation to anticancer treatments, discussing the pros and cons of its presence in the gut microbiome of cancer patients. The current intervention strategies based on the administration of probiotic strains of Bifidobacterium are then discussed. Finally, the need to conduct further studies, especially functional ones, is underlined to provide robust experimental evidence, especially on the underlying molecular mechanisms, and thus resolve the controversies on this microbe for the long-term success of immunochemotherapy.
Collapse
Affiliation(s)
- Giorgia Procaccianti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Sara Roggiani
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Gabriele Conti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Federica D’Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
2
|
Abd El-Hack ME, Abdelnour SA, Kamal M, Khafaga AF, Shakoori AM, Bagadood RM, Naffadi HM, Alyahyawi AY, Khojah H, Alghamdi S, Jaremko M, Świątkiewicz S. Lactoferrin: Antimicrobial impacts, genomic guardian, therapeutic uses and clinical significance for humans and animals. Biomed Pharmacother 2023; 164:114967. [PMID: 37290189 DOI: 10.1016/j.biopha.2023.114967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Lactoferrin (LF) is a protein found in several bodily fluids, such as milk. This protein has a diverse range of functions and is evolutionarily conserved. Lactoferrin is a multifunction protein with distinct biological abilities affecting mammals' immune structures. Reports indicated that the daily uptake of LF from dairy products is unsatisfactory in detecting further health-promoting abilities. Research has shown that it protects against infection, mitigates cellular senescence, and improves nutritional quality. Additionally, LF is being studied as a potential treatment for various diseases and conditions, including gastrointestinal issues and infections. Studies have also demonstrated its effectiveness against various viruses and bacteria. In this article, we'll look closer at the structure of LF and its various biological activities, including its antimicrobial, anti-viral, anti-cancer, anti-osteoporotic, detoxifying, and immunomodulatory properties. More specifically, the protective effect of LF against oxidative DNA damage was also clarified through its ability to abolish DNA damaging issues without interfacing with host genetic material. Fortification with LF protects mitochondria dysfunction syndromes via sustaining redox status and biogenesis and suppressing apoptosis and autophagy singling. Additionally, we'll examine the potential benefits of lactoferrin and provide an overview of recent clinical trials conducted to examine its use in laboratory and living models.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Afnan M Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Rehab M Bagadood
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Hind M Naffadi
- Department of medical genetics,college of medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Areej Y Alyahyawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Hanan Khojah
- Pharmacognosy Department, Faculty of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of clinical pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
3
|
Roggiani S, Mengoli M, Conti G, Fabbrini M, Brigidi P, Barone M, D'Amico F, Turroni S. Gut microbiota resilience and recovery after anticancer chemotherapy. MICROBIOME RESEARCH REPORTS 2023; 2:16. [PMID: 38046820 PMCID: PMC10688789 DOI: 10.20517/mrr.2022.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 12/05/2023]
Abstract
Although research on the role of the gut microbiota (GM) in human health has sharply increased in recent years, what a "healthy" gut microbiota is and how it responds to major stressors is still difficult to establish. In particular, anticancer chemotherapy is known to have a drastic impact on the microbiota structure, potentially hampering its recovery with serious long-term consequences for patients' health. However, the distinguishing features of gut microbiota recovery and non-recovery processes are not yet known. In this narrative review, we first investigated how gut microbiota layouts are affected by anticancer chemotherapy and identified potential gut microbial recovery signatures. Then, we discussed microbiome-based intervention strategies aimed at promoting resilience, i.e., the rapid and complete recovery of a healthy gut microbial network associated with a better prognosis after such high-impact pharmacological treatments.
Collapse
Affiliation(s)
- Sara Roggiani
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
4
|
Conti G, D’Amico F, Fabbrini M, Brigidi P, Barone M, Turroni S. Pharmacomicrobiomics in Anticancer Therapies: Why the Gut Microbiota Should Be Pointed Out. Genes (Basel) 2022; 14:55. [PMID: 36672796 PMCID: PMC9859289 DOI: 10.3390/genes14010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Anticancer treatments have shown a variable therapeutic outcome that may be partly attributable to the activity of the gut microbiota on the pathology and/or therapies. In recent years, microbiota-drug interactions have been extensively investigated, but most of the underlying molecular mechanisms still remain unclear. In this review, we discuss the relationship between the gut microbiota and some of the most commonly used drugs in oncological diseases. Different strategies for manipulating the gut microbiota layout (i.e., prebiotics, probiotics, antibiotics, and fecal microbiota transplantation) are then explored in order to optimize clinical outcomes in cancer patients. Anticancer technologies that exploit tumor-associated bacteria to target tumors and biotransform drugs are also briefly discussed. In the field of pharmacomicrobiomics, multi-omics strategies coupled with machine and deep learning are urgently needed to bring to light the interaction among gut microbiota, drugs, and host for the development of truly personalized precision therapies.
Collapse
Affiliation(s)
- Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
5
|
D’Amico F, Decembrino N, Muratore E, Turroni S, Muggeo P, Mura R, Perruccio K, Vitale V, Zecca M, Prete A, Venturelli F, Leardini D, Brigidi P, Masetti R, Cesaro S, Zama D. Oral Lactoferrin Supplementation during Induction Chemotherapy Promotes Gut Microbiome Eubiosis in Pediatric Patients with Hematologic Malignancies. Pharmaceutics 2022; 14:pharmaceutics14081705. [PMID: 36015331 PMCID: PMC9416448 DOI: 10.3390/pharmaceutics14081705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 12/19/2022] Open
Abstract
Induction chemotherapy is the first-line treatment for pediatric patients with hematologic malignancies. However, several complications may arise, mainly infections and febrile neutropenia, with a strong impact on patient morbidity and mortality. Such complications have been shown to be closely related to alterations of the gut microbiome (GM), making the design of strategies to foster its eubiosis of utmost clinical importance. Here, we evaluated the impact of oral supplementation of lactoferrin (LF), a glycoprotein endowed with anti-inflammatory, immunomodulatory and antimicrobial activities, on GM dynamics in pediatric oncohematologic patients during induction chemotherapy. Specifically, we conducted a double blind, placebo-controlled trial in which GM was profiled through 16S rRNA gene sequencing before and after two weeks of oral supplementation with LF or placebo. LF was safely administered with no adverse effects and promoted GM homeostasis by favoring the maintenance of diversity and preventing the bloom of pathobionts (e.g., Enterococcus). LF could, therefore, be a promising adjunct to current therapeutic strategies in these fragile individuals to reduce the risk of GM-related complications.
Collapse
Affiliation(s)
- Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Nunzia Decembrino
- Neonatal Intensive Care Unit-AOU Policlinico “Rodolico-San Marco”, University of Catania, 95131 Catania, Italy
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Edoardo Muratore
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Correspondence: (E.M.); (S.T.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence: (E.M.); (S.T.)
| | - Paola Muggeo
- Pediatric Hematology and Oncology Department, University of Bari, 70121 Bari, Italy
| | - Rosamaria Mura
- Pediatric Hematology and Oncology Department, “A Cao” Microcitemic Pediatric Hospital, “Botzu” Medical Center, 09100 Cagliari, Italy
| | - Katia Perruccio
- Pediatric Hematology and Oncology Department, “Santa Maria della Misericordia” Hospital, 06132 Perugia, Italy
| | - Virginia Vitale
- Pediatric Hematology and Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Arcangelo Prete
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesco Venturelli
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Riccardo Masetti
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Simone Cesaro
- Pediatric Hematology and Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy
| | - Daniele Zama
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
6
|
Barone M, D'Amico F, Rampelli S, Brigidi P, Turroni S. Age-related diseases, therapies and gut microbiome: A new frontier for healthy aging. Mech Ageing Dev 2022; 206:111711. [PMID: 35868543 DOI: 10.1016/j.mad.2022.111711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
The gut microbiome is undoubtedly a key modulator of human health, which can promote or impair homeostasis throughout life. This is even more relevant in old age, when there is a gradual loss of function in multiple organ systems, related to growth, metabolism, and immunity. Several studies have described changes in the gut microbiome across age groups up to the extreme limits of lifespan, including maladaptations that occur in the context of age-related conditions, such as frailty, neurodegenerative diseases, and cardiometabolic diseases. The gut microbiome can also interact bi-directionally with anti-age-related disease therapies, being affected and in turn influencing their efficacy. In this framework, the development of integrated microbiome-based intervention strategies, aimed at favoring a eubiotic configuration and trajectory, could therefore represent an innovative approach for the promotion of healthy aging and the achievement of longevity.
Collapse
Affiliation(s)
- Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy.
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
7
|
Franza L, Cianci R. Gut Microbiota and Chronic Diseases and Conditions. Curr Med Chem 2022; 29:3145-3146. [DOI: 10.2174/092986732918220420133631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Laura Franza
- Emergency Medicine
Catholic University of Sacred Heart
Fondazione Policlinico Universitario A. Ge-melli IRCCS
00168 Roma
Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery
Catholic University of Sacred Heart
Fondazione Policlinico Universitario A. Gemelli IRCCS
00168 Roma
Italy
| |
Collapse
|
8
|
Ravegnini G, Fosso B, Ricci R, Gorini F, Turroni S, Serrano C, Pilco-Janeta DF, Zhang Q, Zanotti F, De Robertis M, Nannini M, Pantaleo MA, Hrelia P, Angelini S. Analysis of microbiome in GISTs: looking for different players in tumorigenesis and novel therapeutic options. Cancer Sci 2022; 113:2590-2599. [PMID: 35633186 PMCID: PMC9357631 DOI: 10.1111/cas.15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Preclinical forms of gastrointestinal stromal tumor (GIST), small asymptomatic lesions, called microGIST, are detected in approximately 30% of the general population. Gastrointestinal stromal tumor driver mutation can be already detected in microGISTs, even if they do not progress into malignant cancer; these mutations are necessary, but insufficient events to foster tumor progression. Here we profiled the tissue microbiota of 60 gastrointestinal specimens in three different patient cohorts—micro, low‐risk, and high‐risk or metastatic GIST—exploring the compositional structure, predicted function, and microbial networks, with the aim of providing a complete overview of microbial ecology in GIST and its preclinical form. Comparing microGISTs and GISTs, both weighted and unweighted UniFrac and Bray–Curtis dissimilarities showed significant community‐level separation between them and a pronounced difference in Proteobacteria, Firmicutes, and Bacteroidota was observed. Through the LEfSe tool, potential microbial biomarkers associated with a specific type of lesion were identified. In particular, GIST samples were significantly enriched in the phylum Proteobacteria compared to microGISTs. Several pathways involved in sugar metabolism were also highlighted in GISTs; this was expected as cancer usually displays high aerobic glycolysis in place of oxidative phosphorylation and rise of glucose flux to promote anabolic request. Our results highlight that specific differences do exist in the tissue microbiome community between GIST and benign lesions and that microbiome restructuration can drive the carcinogenesis process.
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Bruno Fosso
- National Research Council, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics (DBBB), University of Bari "A. Moro", Bari, Italy
| | - Riccardo Ricci
- UOC di Anatomia Patologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Cesar Serrano
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Daniel F Pilco-Janeta
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qianqian Zhang
- UOC di Anatomia Patologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Federica Zanotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics (DBBB), University of Bari "A. Moro", Bari, Italy
| | - Margherita Nannini
- Department of Experimental, Diagnostic and Specialized Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Experimental, Diagnostic and Specialized Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|