1
|
Ladagu A, Olopade F, Chazot P, Elufioye T, Luong T, Fuller M, Halprin E, Mckay J, Ates-Alagoz Z, Gilbert T, Adejare A, Olopade J. ZA-II-05, a novel NMDA-receptor antagonist reverses vanadium-induced neurotoxicity in Caenorhabditis elegans (C. elegans). BMC Neurosci 2024; 25:56. [PMID: 39468459 PMCID: PMC11520585 DOI: 10.1186/s12868-024-00902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Vanadium is a widely used transition metal in industrial applications, but it also poses significant neurotoxic and environmental risks. Previous studies have shown that exposure to vanadium may lead to neurodegenerative diseases and neuropathic pain, raising concerns about its impact on human health and the ecosystem. To address vanadium neurotoxicity, through targeting NMDA glutamate and dopamine signaling, both involved in neurodegenerative disorders, shows promise. Using Caenorhabditis elegans as a model, we evaluated a novel compound with a mixed NMDA glutamate receptor-dopamine transporter pharmacology, ZA-II-05 and found it effectively ameliorated vanadium-induced neurotoxicity, suggesting a potential neuroprotective role. METHODS Synchronized young adult worms were assigned to four different experimental groups; Controls; 100 mM of Vanadium; Vanadium and 1 mg/ml ZA-II-05; and ZA-II-05 alone. These were examined with different markers, including DAPI, MitoTracker Green and MitoSox stains for assessment of nuclei and mitochondrial density and oxidative stress, respectively. RESULTS Exposure to vanadium in C. elegans resulted in decreased nuclear presence and reduction in mitochondrial content were also analyzed based on fluorescence in the pharyngeal region, signifying an increase in the production of reactive oxygen species, while vanadium co-treatment with ZA-II-05 caused a significant increase in nuclear presence and mitochondrial content. DISCUSSION Treatment with ZA-II-05 significantly preserved cellular integrity, exhibiting a reversal of the detrimental effects induced by vanadium by modulating and preserving the normal function of chemosensory neurons and downstream signaling pathways. This study provides valuable insights into the mechanisms of vanadium-induced neurotoxicity and offers perspectives for developing therapeutic interventions for neurodegenerative diseases related to environmental toxins.
Collapse
Affiliation(s)
- Amany Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Funmilayo Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Paul Chazot
- Department of Biosciences, Durham University, County Durham, DH1 3LE, UK
| | - Taiwo Elufioye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Toan Luong
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA, USA
| | - Madison Fuller
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA, USA
| | - Ethan Halprin
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Jessica Mckay
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| | - Taidinda Gilbert
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA.
| | - James Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Ferreira JGDJ, Flores VG, Marco MR, Fraga BB, Zorzo RR, de Morais PDF, Morisso FDP, Fleck JD, Charão MF, de Mattos CB, Betti AH. Diazepam nanocapsules as an alternative for sleep induction: Development study and toxicity assessment. Food Chem Toxicol 2024; 192:114962. [PMID: 39197520 DOI: 10.1016/j.fct.2024.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Diazepam (DZP) is a sedative medication prescribed to treat anxiety and as a sleep inducer, although its residual effects are unfavorable to patients. Nanotechnology represents a tool to improve the pharmacological characteristics of drugs, reducing their side effects. This study aimed to develop and characterize DZP nanocapsules and to evaluate their toxicity in alternative models and the hypnotic-sedative effect in mice. Nanocapsules were prepared by the nanoprecipitation method and properly characterized. Long-term and accelerated stability studies were performed. The in vitro release profile was determined by diffusion in Franz cells. The safety of the formulation was evaluated in the Caenorhabditis elegans (C. elegans) and the oral acute toxicity in mice. Pharmacological evaluation was performed using thiopental-induced sleeping time. DZP was successfully incorporated into Poly-(ɛ-caprolactone) (PCL) nanocapsules, with high entrapment efficiency. The nanocapsule did not affect the development or survival of C. elegans, different from the free drug, which affected the nematode development at the higher tested dose. No signs of toxicity, nor body mass or feed consumption changes were observed during the 14 days evaluated. Finally, this innovative formulation carrying DZP can produce a hypnotic-effect at a reduced dose compared to the free drug, with no toxicity in alternative models.
Collapse
Affiliation(s)
- Julia Gabriele de Jesus Ferreira
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil; Postgraduate Program on Toxicology and Analytical Toxicology, Universidade FEEVALE, Novo Hamburgo, Brazil
| | | | - Mariana Roza Marco
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil
| | - Bianca Bordignon Fraga
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil
| | - Roberta Rodrigues Zorzo
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil
| | | | - Fernando Dal Pont Morisso
- Advanced Materials Studies Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil
| | - Juliane Deise Fleck
- Molecular Microbiology Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil; Postgraduate Program on Toxicology and Analytical Toxicology, Universidade FEEVALE, Novo Hamburgo, Brazil
| | - Mariele Feiffer Charão
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil; Postgraduate Program on Toxicology and Analytical Toxicology, Universidade FEEVALE, Novo Hamburgo, Brazil
| | - Cristiane Bastos de Mattos
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil; Postgraduate Program on Toxicology and Analytical Toxicology, Universidade FEEVALE, Novo Hamburgo, Brazil
| | - Andresa Heemann Betti
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil; Postgraduate Program on Toxicology and Analytical Toxicology, Universidade FEEVALE, Novo Hamburgo, Brazil.
| |
Collapse
|
3
|
Bongiorni S, Catalani E, Arisi I, Lazzarini F, Del Quondam S, Brunetti K, Cervia D, Prantera G. Pathological Defects in a Drosophila Model of Alzheimer's Disease and Beneficial Effects of the Natural Product Lisosan G. Biomolecules 2024; 14:855. [PMID: 39062569 PMCID: PMC11274821 DOI: 10.3390/biom14070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) brains are histologically marked by the presence of intracellular and extracellular amyloid deposits, which characterize the onset of the disease pathogenesis. Increasing evidence suggests that certain nutrients exert a direct or indirect effect on amyloid β (Aβ)-peptide production and accumulation and, consequently, on AD pathogenesis. We exploited the fruit fly Drosophila melanogaster model of AD to evaluate in vivo the beneficial properties of Lisosan G, a fermented powder obtained from organic whole grains, on the intracellular Aβ-42 peptide accumulation and related pathological phenotypes of AD. Our data showed that the Lisosan G-enriched diet attenuates the production of neurotoxic Aβ peptides in fly brains and reduces neuronal apoptosis. Notably, Lisosan G exerted anti-oxidant effects, lowering brain levels of reactive oxygen species and enhancing mitochondrial activity. These aspects paralleled the increase in autophagy turnover and the inhibition of nucleolar stress. Our results give support to the use of the Drosophila model not only to investigate the molecular genetic bases of neurodegenerative disease but also to rapidly and reliably test the efficiency of potential therapeutic agents and diet regimens.
Collapse
Affiliation(s)
- Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, 00161 Rome, Italy;
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Francesca Lazzarini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| |
Collapse
|
4
|
Tan X, Xu R, Li AP, Li D, Wang Y, Zhao Q, Long LP, Fan YZ, Zhao CX, Liu Y, Li SH. Antioxidant and anti-Alzheimer's disease activities of 1,8-cineole and its cyclodextrin inclusion complex. Biomed Pharmacother 2024; 175:116784. [PMID: 38781865 DOI: 10.1016/j.biopha.2024.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
1,8-Cineole is a bicyclic monoterpene widely distributed in the essential oils of various medicinal plants, and it exhibits significant anti-inflammatory and antioxidant activities. We aimed to investigate the therapeutic effect of 1,8-cineole on anti-Alzheimer's disease by using transgenic Caenorhabditis elegans models. Our studies demonstrated that 1,8-cineole significantly relieved Aβ1-42-induced paralysis and exhibited remarkable antioxidant and anti-Aβ1-42 aggregation activities in transgenic nematodes CL4176, CL2006 and CL2355. We developed a 1,8-cineole/cyclodextrin inclusion complex, displaying enhanced anti-paralysis, anti-Aβ aggregation and antioxidant activities compared to 1,8-cineole. In addition, we found 1,8-cineole treatment activated the SKN-1/Nrf-2 pathway and induced autophagy in nematodes. Our results demonstrated the antioxidant and anti-Alzheimer's disease activities of 1,8-cineole, which provide a potential therapeutic approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Rui Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ai-Pei Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Li-Ping Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yu-Zhou Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chen-Xiao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
5
|
Lu Y, Wu Z, Du Z, Lin X, Tian E, Zhang F, Chao Z. The anti-urolithiasis activity and safety of strangury-relieving herbs: A comparative study based on fruit fly kidney stone model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117968. [PMID: 38428655 DOI: 10.1016/j.jep.2024.117968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Urolithiasis is one of the oldest and most widespread urological diseases suffered globally. In the long history of Traditional Chinese Medicine, there're numerous herbs documented with strangury-relieving properties playing crucial roles in treating various urological disorders, including dysuria, hematuria, and renal colic, etc., which may be caused by urolithiasis. Exploring these herbs may reveal safer, more effective, and cost-efficient drugs and therapies for urolithiasis. AIM OF THE STUDY This study aims to assess the anti-urolithiasis efficacy and safety of 46 Chinese traditional and folk herbal drugs using the fruit fly (Drosophila melanogaster) kidney stone model, in order to identify the most valuable ethnomedicinal materials. MATERIALS AND METHODS Water extract and 50% ethanol extract of each herb were prepared respectively. 0.2% (w/w) sodium oxalate was chosen as appropriate lithogenic agent through fruit fly life span study. Male fruit-flies within three days of emergence were aged for an additional three days, then were randomly divided into experimental groups, model group and control groups (n = 20). The flies in blank control group, model group and positive control group were fed with standard food, standard food containing 0.2% sodium oxalate, standard food containing 0.2% sodium oxalate and 3% (w/w) Garcinia cambogia extract, respectively. Meanwhile, flies in the experimental groups were raised on standard food containing 0.2% sodium oxalate and 3% (w/w) herbal extract. The anti-urolithiasis capability of the extracts was evaluated using stone area ratio (the stone area divided by the area of the Malpighian tubule) and stone-clearing rate. Additionally, the 7-day mortality rate was employed as an indicator of safety. RESULTS Out of the 46 herbs, 24 exhibited significant anti-urolithiasis effects in their water extracts. Among them, Herba Nephrolepidis, Herba Humuli, Herba Desmodii Styracifolii, Cortex Plumeriae Rubrae, and Herba Mimosae Pudicae showed us a low 7-day mortality rate of fruit-flies as well. However, only a limited number of herbal extracts (8 out of 46) showed obvious anti-urolithiasis activity in their 50% ethanol extracts. CONCLUSION Highly potential anti-urolithiasis candidates were discovered from strangury-relieving herbs recorded in classical Traditional Chinese Medicine works, highlighting the significant value of traditional and folk ethnopharmacological knowledge.
Collapse
Affiliation(s)
- Yi Lu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Faculty of Medicinal Plant and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zeliang Wu
- Faculty of Medicinal Plant and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhengxi Du
- Faculty of Medicinal Plant and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaozhu Lin
- Faculty of Medicinal Plant and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Enwei Tian
- Faculty of Medicinal Plant and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fujian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou, 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou, 510515, China; Guangdong Provincial Institute of Nephrology, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Zhi Chao
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Faculty of Medicinal Plant and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Zhao MM, Li LD, Yang MM, Yao L, Wang Q, Zeng KW. Identification of Skp1 as a target of mercury sulfide for neuroprotection. Chem Commun (Camb) 2024; 60:1464-1467. [PMID: 38223951 DOI: 10.1039/d3cc05141b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Mercury sulfide (HgS) exerts extensive biological effects on neuronal function. To investigate the direct target of HgS in neuronal cells, we developed a biotin-tagged HgS probe (bio-HgS) and employed an affinity purification technique to capture its target proteins. Then, we identified S-phase kinase-associated protein 1 (Skp1) as a potential target of HgS. Unexpectedly, we discovered that HgS covalently binds to Skp1 through a "Cys62-HgS-Cys120" mode. Moreover, our findings revealed that HgS inhibits the ubiquitin-protease system through Skp1 to up-regulate SNAP-25 expression, thereby triggering synaptic vesicle exocytosis to regulate locomotion ability in C. elegans. Collectively, our findings may promote a comprehensive interpretation of the pharmacological mechanism of mercury sulfide on neuroprotective function.
Collapse
Affiliation(s)
- Mei-Mei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Lu-Di Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
| | - Mi-Mi Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
| | - Lu Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
7
|
Catalani E, Brunetti K, Del Quondam S, Bongiorni S, Picchietti S, Fausto AM, Lupidi G, Marcantoni E, Perrotta C, Achille G, Buonanno F, Ortenzi C, Cervia D. Exposure to the Natural Compound Climacostol Induces Cell Damage and Oxidative Stress in the Fruit Fly Drosophila melanogaster. TOXICS 2024; 12:102. [PMID: 38393197 PMCID: PMC10891975 DOI: 10.3390/toxics12020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The ciliate Climacostomum virens produces the metabolite climacostol that displays antimicrobial activity and cytotoxicity on human and rodent tumor cells. Given its potential as a backbone in pharmacological studies, we used the fruit fly Drosophila melanogaster to evaluate how the xenobiotic climacostol affects biological systems in vivo at the organismal level. Food administration with climacostol demonstrated its harmful role during larvae developmental stages but not pupation. The midgut of eclosed larvae showed apoptosis and increased generation of reactive oxygen species (ROS), thus demonstrating gastrointestinal toxicity. Climacostol did not affect enteroendocrine cell proliferation, suggesting moderate damage that does not initiate the repairing program. The fact that climacostol increased brain ROS and inhibited the proliferation of neural cells revealed a systemic (neurotoxic) role of this harmful substance. In this line, we found lower expression of relevant antioxidant enzymes in the larvae and impaired mitochondrial activity. Adult offsprings presented no major alterations in survival and mobility, as well the absence of abnormal phenotypes. However, mitochondrial activity and oviposition behavior was somewhat affected, indicating the chronic toxicity of climacostol, which continues moderately until adult stages. These results revealed for the first time the detrimental role of ingested climacostol in a non-target multicellular organism.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (K.B.); (S.D.Q.); (S.P.); (A.M.F.)
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (K.B.); (S.D.Q.); (S.P.); (A.M.F.)
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (K.B.); (S.D.Q.); (S.P.); (A.M.F.)
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (K.B.); (S.D.Q.); (S.P.); (A.M.F.)
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (K.B.); (S.D.Q.); (S.P.); (A.M.F.)
| | - Gabriele Lupidi
- School of Science and Technology, Section of Chemistry, Università degli Studi di Camerino, 62032 Camerino, Italy; (G.L.); (E.M.)
| | - Enrico Marcantoni
- School of Science and Technology, Section of Chemistry, Università degli Studi di Camerino, 62032 Camerino, Italy; (G.L.); (E.M.)
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy;
| | - Gabriele Achille
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100 Macerata, Italy; (G.A.); (F.B.); (C.O.)
| | - Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100 Macerata, Italy; (G.A.); (F.B.); (C.O.)
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100 Macerata, Italy; (G.A.); (F.B.); (C.O.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (K.B.); (S.D.Q.); (S.P.); (A.M.F.)
| |
Collapse
|
8
|
Shanley HT, Taki AC, Nguyen N, Wang T, Byrne JJ, Ang CS, Leeming MG, Nie S, Williamson N, Zheng Y, Young ND, Korhonen PK, Hofmann A, Wells TNC, Jabbar A, Sleebs BE, Gasser RB. Structure activity relationship and target prediction for ABX464 analogues in Caenorhabditis elegans. Bioorg Med Chem 2024; 98:117540. [PMID: 38134663 DOI: 10.1016/j.bmc.2023.117540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Global challenges with treatment failures and/or widespread resistance in parasitic worms against commercially available anthelmintics lend impetus to the development of new anthelmintics with novel mechanism(s) of action. The free-living nematode Caenorhabditis elegans is an important model organism used for drug discovery, including the screening and structure-activity investigation of new compounds, and target deconvolution. Previously, we conducted a whole-organism phenotypic screen of the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) and identified a hit compound, called ABX464, with activity against C. elegans and a related, parasitic nematode, Haemonchus contortus. Here, we tested a series of 44 synthesized analogues to explore the pharmacophore of activity on C. elegans and revealed five compounds whose potency was similar or greater than that of ABX464, but which were not toxic to human hepatoma (HepG2) cells. Subsequently, we employed thermal proteome profiling (TPP), protein structure prediction and an in silico-docking algorithm to predict ABX464-target candidates. Taken together, the findings from this study contribute significantly to the early-stage drug discovery of a new nematocide based on ABX464. Future work is aimed at validating the ABX464-protein interactions identified here, and at assessing ABX464 and associated analogues against a panel of parasitic nematodes, towards developing a new anthelmintic with a mechanism of action that is distinct from any of the compounds currently-available commercially.
Collapse
Affiliation(s)
- Harrison T Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nghi Nguyen
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; National Reference Centre for Authentic Food, Max Rubner-Institut, 95326 Kulmbach, Germany
| | - Tim N C Wells
- Medicines for Malaria Venture (MMV), 1215 Geneva, Switzerland
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brad E Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
9
|
Guerreiro Gomes E, Dorneles Caldeira Balboni M, Velasque Werhli A, Dos Santos Machado K, Monserrat JM. In silico simulation of benzo[a]pyrene toxicity in the worm Caenorhabditiselegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122782. [PMID: 37865330 DOI: 10.1016/j.envpol.2023.122782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/27/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
This study aimed to develop a toxicological screening tool using a virtual (in silico) population of Caenorhabditis elegans exposed to different concentrations of benzo[a]pyrene (BAP). The model used computational tools based on a previous study to simulate the life cycle and characteristics of C. elegans. The model was implemented in Python and adapted with fewer repetitions of simulations to reduce execution time. The toxicity function was based on in vivo data from previous studies, and the results of the model were compared with experimental results. The model showed good accuracy in reproducing the survival data of worms exposed to BAP since the lethal concentration for 50% (LC50) and the 95% confidence interval of exposed worms during 72 h was 77.92 μg/L (71.32-85.12 μg/L). The LC50 of the simulated data was 87.10 μg/L (76.13-99.85 μg/L). It was concluded that the in silico model can be a useful alternative to conventional in vivo testing methods, saving cost and time and addressing ethical concerns.
Collapse
Affiliation(s)
- Eduardo Guerreiro Gomes
- Graduate Program in Physiological Science, Institute of Biological Sciences (ICB), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | - Adriano Velasque Werhli
- Computational Biology Laboratory - COMBI-Lab, Center for Computational Sciences (C3), FURG, Rio Grande, RS, Brazil
| | - Karina Dos Santos Machado
- Computational Biology Laboratory - COMBI-Lab, Center for Computational Sciences (C3), FURG, Rio Grande, RS, Brazil
| | - José María Monserrat
- Graduate Program in Physiological Science, Institute of Biological Sciences (ICB), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
10
|
da Silva Prado L, Grivicich I, Miri JM, Charão MF, Bonfada A, Endres da Rocha G, Bondan da Silva J, Menezes Boaretto FB, Garcia ALH, da Silva J, Picada JN. Toxicological assessment of minoxidil: A drug with therapeutic potential besides alopecia. Food Chem Toxicol 2023; 182:114211. [PMID: 38007212 DOI: 10.1016/j.fct.2023.114211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Minoxidil is regularly prescribed for alopecia, and its therapeutic potential has expanded in recent times. However, few studies have been conducted to evaluate its toxicity, and controversial findings regarding its mutagenic activities remain unsolved. This study aimed to access cytotoxic, genotoxic, and mutagenic properties of minoxidil using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, comet assay, and micronucleus test in mouse fibroblast (L929) cells and its point mutation induction potential in the Salmonella/microsome assay. Furthermore, an in vivo toxicity assessment was conducted in Caenorhabditis elegans. Minoxidil showed cytotoxicity at 2.0 mg/mL in MTT assay. Genotoxicity was observed after 3 h treatment in L929 cells using comet assay. No mutagenic effect was observed in both the micronucleus test and the Salmonella/microsome assay. The lethal dose 50 in C. elegans was determined to be 1.75 mg/mL, and a delay in body development was detected at all concentrations. In conclusion, minoxidil induces DNA damage only in early treatment, implying that this DNA damage may be repairable. This observation corroborates the absence of mutagenic activities observed in L929 cells and Salmonella typhimurium strains. However, the toxicity of minoxidil was evident in both C. elegans and L929 cells, underscoring the need for caution in its use.
Collapse
Affiliation(s)
- Lismare da Silva Prado
- Toxicological Genetics Laboratory, Graduate Program in Cellular and Molecular Biology Applied to Health, Luteran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Ivana Grivicich
- Cancer Biology Laboratory, Graduate Program in Cellular and Molecular Biology Applied to Health, Luteran University of Brazil (ULBRA), Av. Farroupilha 8001, 92425-900, Canoas, RS, Brazil
| | - Jessica Machado Miri
- Cancer Biology Laboratory, Graduate Program in Cellular and Molecular Biology Applied to Health, Luteran University of Brazil (ULBRA), Av. Farroupilha 8001, 92425-900, Canoas, RS, Brazil
| | - Mariele Feiffer Charão
- Graduate Program in Toxicology and Analytical Toxicology, Feevale University, ERS-239, 93525-075, Novo Hamburgo, Brazil
| | - Amanda Bonfada
- Graduate Program in Toxicology and Analytical Toxicology, Feevale University, ERS-239, 93525-075, Novo Hamburgo, Brazil
| | - Gabriela Endres da Rocha
- Graduate Program in Toxicology and Analytical Toxicology, Feevale University, ERS-239, 93525-075, Novo Hamburgo, Brazil
| | - Juliana Bondan da Silva
- Toxicological Genetics Laboratory, Graduate Program in Cellular and Molecular Biology Applied to Health, Luteran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Fernanda Brião Menezes Boaretto
- Toxicological Genetics Laboratory, Graduate Program in Cellular and Molecular Biology Applied to Health, Luteran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Ana Letícia Hilario Garcia
- Toxicological Genetics Laboratory, Graduate Program in Cellular and Molecular Biology Applied to Health, Luteran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil; Toxicological Genetics Laboratory, LaSalle University, Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil
| | - Juliana da Silva
- Toxicological Genetics Laboratory, Graduate Program in Cellular and Molecular Biology Applied to Health, Luteran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil; Toxicological Genetics Laboratory, LaSalle University, Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil
| | - Jaqueline Nascimento Picada
- Toxicological Genetics Laboratory, Graduate Program in Cellular and Molecular Biology Applied to Health, Luteran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil.
| |
Collapse
|
11
|
Oliveira JD, Rodrigues da Silva GH, de Moura LD, Göethel G, Papini JZB, Casadei BR, Ribeiro LNDM, Cabeça LF, Garcia SC, Martinez EF, Tofoli GR, de Paula E. DoE development of ionic gradient liposomes: A successful approach to improve encapsulation, prolong anesthesia and decrease the toxicity of etidocaine. Int J Pharm 2023; 634:122672. [PMID: 36738810 DOI: 10.1016/j.ijpharm.2023.122672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Etidocaine (EDC) is a long-acting local anesthetic of the aminoamide family whose use was discontinued in 2008 for alleged toxicity issues. Ionic gradient liposomes (IGL) are nanostructured carriers for which an inner/outer gradient of ions increases drug upload. This work describes IGLEDC, a formulation optimized by Design of Experiments, composed of hydrogenated soy phosphatidylcholine:cholesterol:EDC, and characterized by DLS, NTA, TEM/Cryo-TEM, DSC and 1H NMR. The optimized IGL showed significant encapsulation efficiency (41 %), good shelf stability (180 days) and evidence of EDC interaction with the lipid bilayer (as seen by DSC and 1H NMR results) that confirms its membrane permeation. In vitro (release kinetics and cytotoxicity) tests showed that the encapsulation of EDC into the IGL promoted sustained release for 24 h and decreased by 50 % the intrinsic toxicity of EDC to Schwann cells. In vivo IGLEDC decreased the toxicity of EDC to Caenorhabditis elegans by 25 % and extended its anesthetic effect by one hour, after infiltrative administration, at clinically used (0.5 %) concentration, in rats. Thus, this novel drug delivery system is a promise for the possible reintroduction of EDC in clinics, aiming at the control of operative and postoperative pain.
Collapse
Affiliation(s)
- Juliana Damasceno Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | | | - Ludmila David de Moura
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Gabriela Göethel
- Toxicology Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliana Z B Papini
- São Leopoldo Mandic Institute and Research Center, Campinas-São Paulo, Brazil
| | | | | | - Luis Fernando Cabeça
- Department of Chemistry, Federal Technological University of Parana, Londrina, PR, Brazil
| | - Solange Cristina Garcia
- Toxicology Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil.
| |
Collapse
|