1
|
Mazzini S, Borgonovo G, Princiotto S, Artali R, Musso L, Aviñó A, Eritja R, Gargallo R, Dallavalle S. Quadruplex-duplex junction in LTR-III: A molecular insight into the complexes with BMH-21, namitecan and doxorubicin. PLoS One 2024; 19:e0306239. [PMID: 39046961 PMCID: PMC11268700 DOI: 10.1371/journal.pone.0306239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Quadruplex-Duplex (Q-D) junctions are unique structural motifs garnering increasing interest as drug targets, due to their frequent occurrence in genomic sequences. The viral HIV LTR-III sequence was chosen as a Q-D junction model to study the affinity of the selected compounds BMH-21, namitecan (ST-1968), and doxorubicin (DOXO), all containing a planar polycyclic aromatic moiety, linked to either one short aminoalkyl or an aminoglycosyl group. A multidisciplinary approach that combines NMR spectroscopy, molecular modelling, circular dichroism (CD) and fluorescence spectroscopy was employed. The studied ligands induced moderate but clear stabilization to the Q-D junction by interacting with the interfacial tetrad. DOXO was found to be the best Q-D junction binder. Interestingly, the removal of the aminoglycosyl group significantly changed the pattern of the interactions, indicating that highly polar substituents have a stronger affinity with the exposed regions of the Q-D junction, particularly at the level of the interfacial tetrad.
Collapse
Affiliation(s)
- Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Roberto Artali
- Scientia Advice di Roberto Artali, Cesano Maderno (MB), Italy
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISCIII, Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISCIII, Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| |
Collapse
|
2
|
Muslihati A, Septiani NLW, Gumilar G, Nugraha N, Wasisto HS, Yuliarto B. Peptide-Based Flavivirus Biosensors: From Cell Structure to Virological and Serological Detection Methods. ACS Biomater Sci Eng 2024; 10:2041-2061. [PMID: 38526408 DOI: 10.1021/acsbiomaterials.3c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
In tropical and developing countries, mosquito-borne diseases by flaviviruses pose a serious threat to public health. Early detection is critical for preventing their spread, but conventional methods are time-consuming and require skilled technicians. Biosensors have been developed to address this issue, but cross-reactivity with other flaviviruses remains a challenge. Peptides are essentially biomaterials used in diagnostics that allow virological and serological techniques to identify flavivirus selectively. This biomaterial originated as a small protein consisting of two to 50 amino acid chains. They offer flexibility in chemical modification and can be easily synthesized and applied to living cells in the engineering process. Peptides could potentially be developed as robust, low-cost, sensitive, and selective receptors for detecting flaviviruses. However, modification and selection of the receptor agents are crucial to determine the effectiveness of binding between the targets and the receptors. This paper addresses two potential peptide nucleic acids (PNAs) and affinity peptides that can detect flavivirus from another target-based biosensor as well as the potential peptide behaviors of flaviviruses. The PNAs detect flaviviruses based on the nucleotide base sequence of the target's virological profile via Watson-Crick base pairing, while the affinity peptides sense the epitope or immunological profile of the targets. Recent developments in the functionalization of peptides for flavivirus biosensors are explored in this Review by division into electrochemical, optical, and other detection methods.
Collapse
Affiliation(s)
- Atqiya Muslihati
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- PT Biostark Analitika Inovasi, Bandung 40375, Indonesia
| | - Ni Luh Wulan Septiani
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia
| | - Gilang Gumilar
- Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia
| | - Nugraha Nugraha
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| | | | - Brian Yuliarto
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| |
Collapse
|
3
|
Ivanov GS, Tribulovich VG, Pestov NB, David TI, Amoah AS, Korneenko TV, Barlev NA. Artificial genetic polymers against human pathologies. Biol Direct 2022; 17:39. [PMID: 36474260 PMCID: PMC9727881 DOI: 10.1186/s13062-022-00353-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Originally discovered by Nielsen in 1991, peptide nucleic acids and other artificial genetic polymers have gained a lot of interest from the scientific community. Due to their unique biophysical features these artificial hybrid polymers are now being employed in various areas of theranostics (therapy and diagnostics). The current review provides an overview of their structure, principles of rational design, and biophysical features as well as highlights the areas of their successful implementation in biology and biomedicine. Finally, the review discusses the areas of improvement that would allow their use as a new class of therapeutics in the future.
Collapse
Affiliation(s)
- Gleb S Ivanov
- Institute of Cytology, Tikhoretsky Ave 4, Saint Petersburg, Russia, 194064
- St. Petersburg State Technological Institute (Technical University), Saint Petersburg, Russia, 190013
| | - Vyacheslav G Tribulovich
- St. Petersburg State Technological Institute (Technical University), Saint Petersburg, Russia, 190013
| | - Nikolay B Pestov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow, Russia, 108819
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141701
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, 117997
- Institute of Biomedical Chemistry, Moscow, Russia, 119121б
| | - Temitope I David
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141701
| | - Abdul-Saleem Amoah
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141701
| | - Tatyana V Korneenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, 117997
| | - Nikolai A Barlev
- Institute of Cytology, Tikhoretsky Ave 4, Saint Petersburg, Russia, 194064.
- Institute of Biomedical Chemistry, Moscow, Russia, 119121б.
- School of Medicine, Nazarbayev University, 010000, Astana, Kazakhstan.
| |
Collapse
|
4
|
Immel JR, Bloom S. carba-Nucleopeptides (cNPs): A Biopharmaceutical Modality Formed through Aqueous Rhodamine B Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202205606. [PMID: 35507689 PMCID: PMC9256812 DOI: 10.1002/anie.202205606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 12/14/2022]
Abstract
Exchanging the ribose backbone of an oligonucleotide for a peptide can enhance its physiologic stability and nucleic acid binding affinity. Ordinarily, the eneamino nitrogen atom of a nucleobase is fused to the side chain of a polypeptide through a new C-N bond. The discovery of C-C linked nucleobases in the human transcriptome reveals new opportunities for engineering nucleopeptides that replace the traditional C-N bond with a non-classical C-C bond, liberating a captive nitrogen atom and promoting new hydrogen bonding and π-stacking interactions. We report the first late-stage synthesis of C-C linked carba-nucleopeptides (cNPs) using aqueous Rhodamine B photoredox catalysis. We prepare brand-new cNPs in batch, in parallel, and in flow using three long-wavelength photochemical setups. We detail the mechanism of our reaction by experimental and computational studies and highlight the essential role of diisopropylethylamine as a bifurcated two-electron reductant.
Collapse
Affiliation(s)
- Jacob R Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
5
|
Suparpprom C, Vilaivan T. Perspectives on conformationally constrained peptide nucleic acid (PNA): insights into the structural design, properties and applications. RSC Chem Biol 2022; 3:648-697. [PMID: 35755191 PMCID: PMC9175113 DOI: 10.1039/d2cb00017b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acid or PNA is a synthetic DNA mimic that contains a sequence of nucleobases attached to a peptide-like backbone derived from N-2-aminoethylglycine. The semi-rigid PNA backbone acts as a scaffold that arranges the nucleobases in a proper orientation and spacing so that they can pair with their complementary bases on another DNA, RNA, or even PNA strand perfectly well through the standard Watson-Crick base-pairing. The electrostatically neutral backbone of PNA contributes to its many unique properties that make PNA an outstanding member of the xeno-nucleic acid family. Not only PNA can recognize its complementary nucleic acid strand with high affinity, but it does so with excellent specificity that surpasses the specificity of natural nucleic acids and their analogs. Nevertheless, there is still room for further improvements of the original PNA in terms of stability and specificity of base-pairing, direction of binding, and selectivity for different types of nucleic acids, among others. This review focuses on attempts towards the rational design of new generation PNAs with superior performance by introducing conformational constraints such as a ring or a chiral substituent in the PNA backbone. A large collection of conformationally rigid PNAs developed during the past three decades are analyzed and compared in terms of molecular design and properties in relation to structural data if available. Applications of selected modified PNA in various areas such as targeting of structured nucleic acid targets, supramolecular scaffold, biosensing and bioimaging, and gene regulation will be highlighted to demonstrate how the conformation constraint can improve the performance of the PNA. Challenges and future of the research in the area of constrained PNA will also be discussed.
Collapse
Affiliation(s)
- Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
6
|
Immel JR, Bloom S. carba
‐Nucleopeptides (
c
NPs): A Biopharmaceutical Modality Formed through Aqueous Rhodamine B Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jacob R. Immel
- Department of Medicinal Chemistry University of Kansas Lawrence KS 66045 USA
| | - Steven Bloom
- Department of Medicinal Chemistry University of Kansas Lawrence KS 66045 USA
| |
Collapse
|
7
|
Das A, Dutta S. Binding Studies of Aloe-Active Compounds with G-Quadruplex Sequences. ACS OMEGA 2021; 6:18344-18351. [PMID: 34308065 PMCID: PMC8296576 DOI: 10.1021/acsomega.1c02207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/02/2021] [Indexed: 05/04/2023]
Abstract
G-quadruplex, a unique DNA quartet motif with a pivotal role in regulation of the gene expression, has been established as a potent therapeutic target for the treatment of cancer. Small-molecule-mediated stabilization of the G-quadruplex and thus inhibition of the expression from the oncogene promoter and telomere region may be a promising anticancer strategy. Aloe vera-derived natural compounds like aloe emodin, aloe emodin-8-glucoside, and aloin have significant anticancer activity. Comparative binding studies of these three molecules with varieties of G-quadruplex sequences were carried out using different biophysical techniques like absorption spectral titration, fluorescence spectral titration, dye displacement, ferrocyanide quenching assay, and CD and DSC thermogram studies. Overall, this study revealed aloe emodin and aloe emodin-8-glucoside as potent quadruplex-binding molecules mostly in the case of c-KIT and c-MYC sequences with a binding affinity value of 105 order that is higher than their duplex DNA binding ability. This observation may be correlated to the anticancer activity of these aloe-active compounds and also be helpful in the potential therapeutic application of natural compound-based molecules.
Collapse
|
8
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
9
|
Díaz-Casado L, Serrano-Chacón I, Montalvillo-Jiménez L, Corzana F, Bastida A, Santana AG, González C, Asensio JL. De Novo Design of Selective Quadruplex-Duplex Junction Ligands and Structural Characterisation of Their Binding Mode: Targeting the G4 Hot-Spot. Chemistry 2021; 27:6204-6212. [PMID: 33368678 DOI: 10.1002/chem.202005026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 01/03/2023]
Abstract
Targeting the interface between DNA quadruplex and duplex regions by small molecules holds significant promise in both therapeutics and nanotechnology. Herein, a new pharmacophore is reported, which selectively binds with high affinity to quadruplex-duplex junctions, while presenting a poorer affinity for G-quadruplex or duplex DNA alone. Ligands complying with the reported pharmacophore exhibit a significant affinity and selectivity for quadruplex-duplex junctions, including the one observed in the HIV-1 LTR-III sequence. The structure of the complex between a quadruplex-duplex junction with a ligand of this family has been determined by NMR methods. According to these data, the remarkable selectivity of this structural motif for quadruplex-duplex junctions is achieved through an unprecedented interaction mode so far unexploited in medicinal and biological chemistry: the insertion of a benzylic ammonium moiety into the centre of the partially exposed G-tetrad at the interface with the duplex. Further decoration of the described scaffolds with additional fragments opens up the road to the development of selective ligands for G-quadruplex-forming regions of the genome.
Collapse
Affiliation(s)
- Laura Díaz-Casado
- Glycochemistry and Molecular Recognition group-Dpt. Bio-Organic Chemistry, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3., 28006, Madrid, Spain
| | - Israel Serrano-Chacón
- Instituto de Química-Física Rocasolano (IQFR-CSIC), Serrano 119., 28006, Madrid, Spain
| | - Laura Montalvillo-Jiménez
- Glycochemistry and Molecular Recognition group-Dpt. Bio-Organic Chemistry, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3., 28006, Madrid, Spain
| | - Francisco Corzana
- Department of Chemistry, Centro de Investigación en Síntesis Química, Universidad de La Rioja, Madre de Dios, 53., 26006, Logroño, Spain
| | - Agatha Bastida
- Glycochemistry and Molecular Recognition group-Dpt. Bio-Organic Chemistry, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3., 28006, Madrid, Spain
| | - Andrés G Santana
- Glycochemistry and Molecular Recognition group-Dpt. Bio-Organic Chemistry, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3., 28006, Madrid, Spain
| | - Carlos González
- Instituto de Química-Física Rocasolano (IQFR-CSIC), Serrano 119., 28006, Madrid, Spain
| | - Juan Luis Asensio
- Glycochemistry and Molecular Recognition group-Dpt. Bio-Organic Chemistry, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3., 28006, Madrid, Spain
| |
Collapse
|
10
|
Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. BIOCHEMISTRY (MOSCOW) 2017; 81:1602-1649. [PMID: 28260487 PMCID: PMC7087716 DOI: 10.1134/s0006297916130034] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Collapse
Affiliation(s)
- N G Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
11
|
Bhartiya D, Chawla V, Ghosh S, Shankar R, Kumar N. Genome-wide regulatory dynamics of G-quadruplexes in human malaria parasite Plasmodium falciparum. Genomics 2016; 108:224-231. [PMID: 27789319 DOI: 10.1016/j.ygeno.2016.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022]
Abstract
The AT-rich genome of P. falciparum has uniquely localized G-rich stretches that have propensity to form G-quadruplexes. However, their global occurrence and potential biological roles in the parasite are poorly explored. Our genome-wide analysis revealed unique enrichment of quadruplexes in P. falciparum genome which was remarkably different from other Plasmodium species. A distinct predominance of quadruplexes was observed in nuclear and organellar genes that participate in antigenic variation, pathogenesis, DNA/RNA regulation, metabolic and protein quality control processes. Data also suggested association of quadruplexes with SNPs and DNA methylation. Furthermore, analysis of steady state mRNA (RNA-seq) and polysome-associated mRNA (Ribosome profiling) data revealed stage-specific differences in translational efficiency of quadruplex harboring genes. Taken together, our findings hint towards existence of regulatory dynamics associated with quadruplexes that may modulate translational efficiency of quadruplex harboring genes to provide survival advantage to the parasite against host immune response and antimalarial drug pressure.
Collapse
Affiliation(s)
- Deeksha Bhartiya
- ICMR-Institute of Cytology and Preventive Oncology, Noida 201301, Uttar Pradesh, India
| | - Vandna Chawla
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Sourav Ghosh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road Campus, Delhi 110020, India
| | - Ravi Shankar
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| | - Niti Kumar
- CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Delhi, India.
| |
Collapse
|
12
|
Patil KM, Chen G. Recognition of RNA Sequence and Structure by Duplex and Triplex Formation: Targeting miRNA and Pre-miRNA. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-34175-0_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Abstract
Advances and applications of synthetic genetic polymers (xeno-nucleic acids) are reviewed in this article. The types of synthetic genetic polymers are summarized. The basic properties of them are elaborated and their technical applications are presented. Challenges and prospects of synthetic genetic polymers are discussed.
Collapse
Affiliation(s)
- Qian Ma
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Danence Lee
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Yong Quan Tan
- Department of Biochemistry
- National University of Singapore
- Singapore 117597
| | - Garrett Wong
- Department of Biochemistry
- National University of Singapore
- Singapore 117597
| | - Zhiqiang Gao
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| |
Collapse
|
14
|
Gaynutdinov TI, Englund EA, Appella DH, Onyshchenko MI, Neumann RD, Panyutin IG. G-quadruplex formation between G-rich PNA and homologous sequences in oligonucleotides and supercoiled plasmid DNA. Nucleic Acid Ther 2015; 25:78-84. [PMID: 25650982 DOI: 10.1089/nat.2014.0517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Guanine (G)-rich DNA sequences can adopt four-stranded quadruplex conformations that may play a role in the regulation of genetic processes. To explore the possibility of targeted molecular recognition of DNA sequences with short G-rich peptide nucleic acids (PNA) and to assess the strand arrangement in such complexes, we used PNA and DNA with the Oxytricha nova telomeric sequence d(G4T4G4) as a model. PNA probes were complexed with DNA targets in the following forms: single-stranded oligonucleotides, a loop of DNA in a hairpin conformation, and as supercoiled plasmid with the (G4T4G4)/(C4A4C4) insert. Gel-shift mobility assays demonstrated formation of stable hybrid complexes between the homologous G4T4G4 PNA and DNA with multiple modes of binding. Chemical and enzymatic probing revealed sequence-specific and G-quadruplex dependent binding of G4T4G4 PNA to dsDNA. Spectroscopic and electrophoretic analysis of the complex formed between PNA and the synthetic DNA hairpin containing the G4T4G4 loop showed that the stoichiometry of a prevailing complex is three PNA strands per one DNA strand. We speculate how this new PNA-DNA complex architecture can help to design more selective, quadruplex-specific PNA probes.
Collapse
Affiliation(s)
- Timur I Gaynutdinov
- 1 Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health , Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
15
|
Rouleau SG, Beaudoin JD, Bisaillon M, Perreault JP. Small antisense oligonucleotides against G-quadruplexes: specific mRNA translational switches. Nucleic Acids Res 2014; 43:595-606. [PMID: 25510493 PMCID: PMC4288198 DOI: 10.1093/nar/gku1311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
G-quadruplexes (G4) are intricate RNA structures found throughout the transcriptome. Because they are associated with a variety of biological cellular mechanisms, these fascinating structural motifs are seen as potential therapeutic targets against many diseases. While screening of chemical compounds specific to G4 motifs has yielded interesting results, no single compound successfully discriminates between G4 motifs based on nucleotide sequences alone. This level of specificity is best attained using antisense oligonucleotides (ASO). Indeed, oligonucleotide-based strategies are already used to modulate DNA G4 folding in vitro. Here, we report that, in human cells, the use of short ASO to promote and inhibit RNA G4 folding affects the translation of specific mRNAs, including one from the 5'UTR of the H2AFY gene, a histone variant associated with cellular differentiation and cancer. These results suggest that the relatively high specificity of ASO-based strategies holds significant potential for applications aimed at modulating G4-motif folding.
Collapse
Affiliation(s)
- Samuel G Rouleau
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Denis Beaudoin
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Québec, J1E 4K8, Canada
| | - Martin Bisaillon
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Québec, J1E 4K8, Canada
| |
Collapse
|
16
|
Shi H, Yang F, Li W, Zhao W, Nie K, Dong B, Liu Z. A review: fabrications, detections and applications of peptide nucleic acids (PNAs) microarray. Biosens Bioelectron 2014; 66:481-9. [PMID: 25499661 DOI: 10.1016/j.bios.2014.12.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 01/24/2023]
Abstract
Peptide nucleic acid (PNA) is a mimic of DNA that shows a high chemical stability and can survive the enzymatic degradation of nucleases and proteases. The superior binding properties of PNA enable the formation of PNA/DNA or PNA/RNA duplex with excellent thermal stability and unique ionic strength effect. The introduction of microarray makes it possible to achieve accurate, high throughput parallel analysis of DNA or RNA with a highly integrated and low reagents consuming device. This powerful tool expands the applications of PNA in genotyping based on single nucleotide polymorphism (SNP) detection, the monitoring of disease-related miRNA expression and pathogen detection. This review paper discusses the fabrications of PNA microarrays through in situ synthesis strategy or spotting method by automatic devices, the various detection methods for the microarray-based hybridization and the current applications of PNA microarrays.
Collapse
Affiliation(s)
- Huanhuan Shi
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Feipeng Yang
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Wenjia Li
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Weiwei Zhao
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Kaixuan Nie
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Bo Dong
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Zhengchun Liu
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China.
| |
Collapse
|
17
|
Müller S, Laxmi-Reddy K, Jena PV, Baptiste B, Dong Z, Godde F, Ha T, Rodriguez R, Balasubramanian S, Huc I. Targeting DNA G-quadruplexes with helical small molecules. Chembiochem 2014; 15:2563-70. [PMID: 25256604 PMCID: PMC4284101 DOI: 10.1002/cbic.201402439] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 11/08/2022]
Abstract
We previously identified quinoline-based oligoamide helical foldamers and a trimeric macrocycle as selective ligands of DNA quadruplexes. Their helical structures might permit targeting of the backbone loops and grooves of G-quadruplexes instead of the G-tetrads. Given the vast array of morphologies G-quadruplex structures can adopt, this might be a way to achieve sequence selective binding. Here, we describe the design and synthesis of molecules based on macrocyclic and helically folded oligoamides. We tested their ability to interact with the human telomeric G-quadruplex and an array of promoter G-quadruplexes by using FRET melting assay and single-molecule FRET. Our results show that they constitute very potent ligands--comparable to the best so far reported. Their modes of interaction differ from those of traditional tetrad binders, thus opening avenues for the development of molecules specific for certain G-quadruplex conformations.
Collapse
Affiliation(s)
- Sebastian Müller
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
- Cambridge Institute, Cancer Research UK, Li Ka Shing CenterCambridge CB2 0RE (UK)
| | - Katta Laxmi-Reddy
- Université de Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie Biologie2 rue Escarpit, 33607 Pessac (France) and CNRS, CBMN, UMR 5248 (France)
| | - Prakrit V Jena
- Department of Physics, Howard Hughes Medical Institute, University of Illinois at Urbana–ChampaignUrbana, IL 61801 (USA)
| | - Benoit Baptiste
- Université de Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie Biologie2 rue Escarpit, 33607 Pessac (France) and CNRS, CBMN, UMR 5248 (France)
| | - Zeyuan Dong
- Université de Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie Biologie2 rue Escarpit, 33607 Pessac (France) and CNRS, CBMN, UMR 5248 (France)
| | - Frédéric Godde
- Université de Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie Biologie2 rue Escarpit, 33607 Pessac (France) and CNRS, CBMN, UMR 5248 (France)
| | - Taekjip Ha
- Department of Physics, Howard Hughes Medical Institute, University of Illinois at Urbana–ChampaignUrbana, IL 61801 (USA)
| | - Raphaël Rodriguez
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
- Cambridge Institute, Cancer Research UK, Li Ka Shing CenterCambridge CB2 0RE (UK)
| | - Shankar Balasubramanian
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
- Cambridge Institute, Cancer Research UK, Li Ka Shing CenterCambridge CB2 0RE (UK)
| | - Ivan Huc
- Université de Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie Biologie2 rue Escarpit, 33607 Pessac (France) and CNRS, CBMN, UMR 5248 (France)
| |
Collapse
|
18
|
Englund EA, Gupta P, Micklitsch CM, Onyshchenko MI, Remeeva E, Neumann RD, Panyutin IG, Appella DH. PPG peptide nucleic acids that promote DNA guanine quadruplexes. Chembiochem 2014; 15:1887-90. [PMID: 25044379 DOI: 10.1002/cbic.201402224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that guanine-rich (G-rich) sequences with the potential to form quadruplexes might play a role in normal transcription as well as overexpression of oncogenes. Chemical tools that allow examination of the specific roles of G-quadruplex formation in vivo, and their association with gene regulation will be essential to understanding the functions of these quadruplexes and might lead to beneficial therapies. Properly designed peptide nucleic acids (PNAs) can invade G-rich DNA duplexes and induce the formation of a G-quadruplex in the free DNA strand. Replacing guanines in the PNA sequence with pyrazolo[3,4-d]pyrimidine guanine (PPG) nucleobases eliminates G-quadruplex formation with PNA and promotes invasion of the target DNA.
Collapse
Affiliation(s)
- Ethan A Englund
- Laboratory of Bioorganic Chemistry, NIDDK, NIH, DHHS, 8 Center Drive, Bethesda, MD 20892 (USA)
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gupta A, Lee LL, Roy S, Tanious FA, Wilson WD, Ly DH, Armitage BA. Strand invasion of DNA quadruplexes by PNA: comparison of homologous and complementary hybridization. Chembiochem 2013; 14:1476-84. [PMID: 23868291 PMCID: PMC3856695 DOI: 10.1002/cbic.201300263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 12/18/2022]
Abstract
Molecular recognition of DNA quadruplex structures is envisioned to be a strategy for regulating gene expression at the transcriptional level and for in situ analysis of telomere structure and function. The recognition of DNA quadruplexes by peptide nucleic acid (PNA) oligomers is presented here, with a focus on comparing complementary, heteroduplex-forming and homologous, heteroquadruplex-forming PNAs. Surface plasmon resonance and optical spectroscopy experiments demonstrated that the efficacy of a recognition mode depended strongly on the target. Homologous PNA readily invades a quadruplex derived from the promoter regulatory region found upstream of the MYC proto-oncogene to form a heteroquadruplex at high potassium concentration mimicking the intracellular environment, whereas complementary PNA exhibits virtually no hybridization. In contrast, complementary PNA is superior to the homologous in hybridizing to a quadruplex modeled on the human telomere sequence. The results are discussed in terms of the different structural morphologies of the quadruplex targets and the implications for in vivo recognition of quadruplexes by PNAs.
Collapse
Affiliation(s)
- Anisha Gupta
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Ling-Ling Lee
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Subhadeep Roy
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Farial A. Tanious
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - Danith H. Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| |
Collapse
|