1
|
Patil S, Bhandari S. A Review: Discovering 1,3,4-oxadiazole and chalcone nucleus for cytotoxicity/EGFR inhibitory anticancer activity. Mini Rev Med Chem 2021; 22:805-820. [PMID: 34477516 DOI: 10.2174/1389557521666210902160644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/19/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Cancer is reported to be one of the most life-threatening diseases. Major limitations of currently used anticancer agents are drug resistance, very small therapeutic index, and severe, multiple side effects. OBJECTIVE The current scenario necessitates developing new anticancer agents, acting on novel targets for effectively controlling cancer. The epidermal growth factor receptor is one such target, which is being explored for 1,3,4-oxadiazole and chalcone nuclei. METHOD Findings of different researchers working on these scaffolds have been reviewed and analyzed, and the outcomes were summarized. This review focuses on Structure-Activity Relationship studies (SARs) and computational studies of various 1,3,4-oxadiazole and chalcone hybrids/derivatives reported as cytotoxic/EGFR-TK inhibitory anticancer activity. RESULT AND CONCLUSION 1,3,4-oxadiazole and chalcone hybrids/derivatives with varied substitutions are found to be effective pharmacophores in obtaining potent anticancer activity. Having done a thorough literature survey, we conclude that this review will surely provide firm and better insights to the researchers to design and develop potent hybrids/derivatives that inhibit EGFR.
Collapse
Affiliation(s)
- Shital Patil
- All India Shri Shivaji Memorial Society's College of Pharmacy, Kennedy Road, Near RTO, Pune-411001, India
| | - Shashikant Bhandari
- All India Shri Shivaji Memorial Society's College of Pharmacy, Kennedy Road, Near RTO, Pune-411001, India
| |
Collapse
|
2
|
Kara A, Özgür A, Tekin Ş, Tutar Y. Computational Analysis of Drug Resistance Network in Lung Adenocarcinoma. Anticancer Agents Med Chem 2021; 22:566-578. [PMID: 33602077 DOI: 10.2174/1871520621666210218175439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is a significant health problem and accounts for one-third of the deaths worldwide. A great majority of these deaths are caused by non-small cell lung cancer (NSCLC). Chemotherapy is the leading treatment method for NSCLC, but resistance to chemotherapeutics is an important limiting factor that reduces the treatment success of patients with NSCLC. OBJECTIVE In this study, the relationship between differentially expressed genes affecting the survival of the patients, according to the bioinformatics analyses, and the mechanism of drug resistance is investigated for non-small cell lung adenocarcinoma patients. METHODS Five hundred thirteen patient samples were compared with fifty-nine control samples. The employed dataset was downloaded from The Cancer Genome Atlas (TCGA) database. The information on how the drug activity altered against the expressional diversification of the genes was extracted from the NCI-60 database. Four hundred thirty-three drugs with known mechanism of action (MoA) were analyzed. Diversifications of the activity of these drugs related to genes were considered based on nine lung cancer cell lines virtually. The analyses were performed using R programming language, GDCRNATools, rcellminer, and Cytoscape. RESULTS This work analyzed the common signaling pathways and expressional alterations of the proteins in these pathways associated with survival and drug resistance in lung adenocarcinoma. Deduced computational data demonstrated that proteins of EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways were associated with molecular mechanism of resistance to anticancer drugs in NSCLC cells. CONCLUSION To understand the relationships between resistance to anticancer drugs and EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways is an important approach to design effective therapeutics for individuals with NSCLC adenocarcinoma.
Collapse
Affiliation(s)
- Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, . Turkey
| | - Aykut Özgür
- Tokat Gaziosmanpaşa University, Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat, . Turkey
| | - Şaban Tekin
- University of Health Sciences, Turkey, Hamidiye Faculty of Medicine, Department of Basic Medical Sciences, Division of Biology, İstanbul, . Turkey
| | - Yusuf Tutar
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Molecular Oncology, Istanbul, . Turkey
| |
Collapse
|
3
|
Dokla EME, Fang CS, Abouzid KAM, Chen CS. 1,2,4-Oxadiazole derivatives targeting EGFR and c-Met degradation in TKI resistant NSCLC. Eur J Med Chem 2019; 182:111607. [PMID: 31446247 DOI: 10.1016/j.ejmech.2019.111607] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 11/15/2022]
Abstract
Development of small-molecule agents with the ability to facilitate oncoprotein degradation has emerged as a promising strategy for cancer therapy. Since EGFR and c-Met are both implicated in oncogenesis and tumor progression, we initiated a screening program by using an in-house library to identify agents capable of inducing the concomitant suppression of EGFR and c-Met expression, which led to the identification of compound 1, a 1,2,4-oxadiazole derivative. Based on the scaffold of 1, we developed a series of derivatives to assess their efficacies in facilitating the downregulation of EGFR and c-Met, among which compound 48 represented the optimal agent. 48 showed equipotent antiproliferative activity against a panel of five NSCLC cell lines with different EGFR mutational status (IC50 = 0.2-0.6 μM), while the same panel exhibited differential sensitivity to different EGFR kinase inhibitors tested. Cell cycle analysis indicated that the antiproliferative activity of 48 was associated with its ability to cause G2/M arrest and, to a lesser extent, apoptosis. Western blot and RT-PCR analyses revealed that 48 facilitated the downregulation of EGFR and c-Met at the protein level. In vivo data showed that oral administration of 48 was effective in suppressing gefitinib-resistant H1975 xenograft tumor growth in nude mice, and at a suboptimal dose, could sensitize H1975 tumors to gefitinib. Based on these findings, 48 represents a promising candidate for further development to target EGFR TKI-resistant NSCLC via dual inhibition of EGFR and c-Met oncoproteins.
Collapse
Affiliation(s)
- Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Chun-Sheng Fang
- Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt.
| | - Ching S Chen
- Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40447, Taiwan.
| |
Collapse
|
4
|
Senkane K, Vinogradova EV, Suciu RM, Crowley VM, Zaro BW, Bradshaw JM, Brameld KA, Cravatt BF. The Proteome‐Wide Potential for Reversible Covalency at Cysteine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kristine Senkane
- Department of ChemistryThe Scripps Research Institute La Jolla CA 92037 USA
| | | | - Radu M. Suciu
- Department of ChemistryThe Scripps Research Institute La Jolla CA 92037 USA
| | - Vincent M. Crowley
- Department of ChemistryThe Scripps Research Institute La Jolla CA 92037 USA
| | - Balyn W. Zaro
- Department of ChemistryThe Scripps Research Institute La Jolla CA 92037 USA
| | | | - Ken A. Brameld
- Principia Biopharma 220 E. Grand Avenue South San Francisco CA 94080 USA
| | | |
Collapse
|
5
|
Senkane K, Vinogradova EV, Suciu RM, Crowley VM, Zaro BW, Bradshaw JM, Brameld KA, Cravatt BF. The Proteome-Wide Potential for Reversible Covalency at Cysteine. Angew Chem Int Ed Engl 2019; 58:11385-11389. [PMID: 31222866 DOI: 10.1002/anie.201905829] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 01/06/2023]
Abstract
Reversible covalency, achieved with, for instance, highly electron-deficient olefins, offers a compelling strategy to design chemical probes and drugs that benefit from the sustained target engagement afforded by irreversible compounds, while avoiding permanent protein modification. Reversible covalency has mainly been evaluated for cysteine residues in individual kinases and the broader potential for this strategy to engage cysteines across the proteome remains unexplored. Herein, we describe a mass-spectrometry-based platform that integrates gel filtration with activity-based protein profiling to assess cysteine residues across the human proteome for both irreversible and reversible interactions with small-molecule electrophiles. Using this method, we identify numerous cysteine residues from diverse protein classes that are reversibly engaged by cyanoacrylamide fragment electrophiles, revealing the broad potential for reversible covalency as a strategy for chemical-probe discovery.
Collapse
Affiliation(s)
- Kristine Senkane
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Radu M Suciu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Vincent M Crowley
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Balyn W Zaro
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - J Michael Bradshaw
- Principia Biopharma, 220 E. Grand Avenue, South San Francisco, CA, 94080, USA
| | - Ken A Brameld
- Principia Biopharma, 220 E. Grand Avenue, South San Francisco, CA, 94080, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
6
|
Zaltariov MF, Hammerstad M, Arabshahi HJ, Jovanović K, Richter KW, Cazacu M, Shova S, Balan M, Andersen NH, Radulović S, Reynisson J, Andersson KK, Arion VB. New Iminodiacetate-Thiosemicarbazone Hybrids and Their Copper(II) Complexes Are Potential Ribonucleotide Reductase R2 Inhibitors with High Antiproliferative Activity. Inorg Chem 2017; 56:3532-3549. [PMID: 28252952 DOI: 10.1021/acs.inorgchem.6b03178] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As ribonucleotide reductase (RNR) plays a crucial role in nucleic acid metabolism, it is an important target for anticancer therapy. The thiosemicarbazone Triapine is an efficient R2 inhibitor, which has entered ∼20 clinical trials. Thiosemicarbazones are supposed to exert their biological effects through effectively binding transition-metal ions. In this study, six iminodiacetate-thiosemicarbazones able to form transition-metal complexes, as well as six dicopper(II) complexes, were synthesized and fully characterized by analytical, spectroscopic techniques (IR, UV-vis; 1H and 13C NMR), electrospray ionization mass spectrometry, and X-ray diffraction. The antiproliferative effects were examined in several human cancer and one noncancerous cell lines. Several of the compounds showed high cytotoxicity and marked selectivity for cancer cells. On the basis of this, and on molecular docking calculations one lead dicopper(II) complex and one thiosemicarbazone were chosen for in vitro analysis as potential R2 inhibitors. Their interaction with R2 and effect on the Fe(III)2-Y· cofactor were characterized by microscale thermophoresis, and two spectroscopic techniques, namely, electron paramagnetic resonance and UV-vis spectroscopy. Our findings suggest that several of the synthesized proligands and copper(II) complexes are effective antiproliferative agents in several cancer cell lines, targeting RNR, which deserve further investigation as potential anticancer drugs.
Collapse
Affiliation(s)
- Mirela F Zaltariov
- Institute of Inorganic Chemistry, University of Vienna , Währinger Strasse 42, 1090 Vienna, Austria.,Inorganic Polymers Department, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy , Aleea G. Ghica Voda 41A, 700487 Iasi, Romania
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo , P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | | | - Katarina Jovanović
- Institute for Oncology and Radiology of Serbia , Pasterova 14, 11000 Belgrade, Serbia
| | - Klaus W Richter
- Institute of Inorganic Chemistry-Functional Materials, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Maria Cazacu
- Inorganic Polymers Department, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy , Aleea G. Ghica Voda 41A, 700487 Iasi, Romania
| | - Sergiu Shova
- Inorganic Polymers Department, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy , Aleea G. Ghica Voda 41A, 700487 Iasi, Romania
| | - Mihaela Balan
- Inorganic Polymers Department, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy , Aleea G. Ghica Voda 41A, 700487 Iasi, Romania
| | - Niels H Andersen
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia , Pasterova 14, 11000 Belgrade, Serbia
| | - Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland , Auckland, New Zealand
| | - K Kristoffer Andersson
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo , P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Vladimir B Arion
- Institute of Inorganic Chemistry, University of Vienna , Währinger Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
7
|
Salim KY, Vareki SM, Danter WR, Koropatnick J. COTI-2, a novel small molecule that is active against multiple human cancer cell lines in vitro and in vivo. Oncotarget 2016; 7:41363-41379. [PMID: 27150056 PMCID: PMC5173065 DOI: 10.18632/oncotarget.9133] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/16/2016] [Indexed: 12/28/2022] Open
Abstract
Identification of novel anti-cancer compounds with high efficacy and low toxicity is critical in drug development. High-throughput screening and other such strategies are generally resource-intensive. Therefore, in silico computer-aided drug design has gained rapid acceptance and popularity. We employed our proprietary computational platform (CHEMSAS®), which uses a unique combination of traditional and modern pharmacology principles, statistical modeling, medicinal chemistry, and machine-learning technologies to discover and optimize novel compounds that could target various cancers. COTI-2 is a small molecule candidate anti-cancer drug identified using CHEMSAS. This study describes the in vitro and in vivo evaluation of COTI-2. Our data demonstrate that COTI-2 is effective against a diverse group of human cancer cell lines regardless of their tissue of origin or genetic makeup. Most treated cancer cell lines were sensitive to COTI-2 at nanomolar concentrations. When compared to traditional chemotherapy or targeted-therapy agents, COTI-2 showed superior activity against tumor cells, in vitro and in vivo. Despite its potent anti-tumor efficacy, COTI-2 was safe and well-tolerated in vivo. Although the mechanism of action of COTI-2 is still under investigation, preliminary results indicate that it is not a traditional kinase or an Hsp90 inhibitor.
Collapse
Affiliation(s)
| | - Saman Maleki Vareki
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | - James Koropatnick
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Department of Pathology, Western University, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|