1
|
Chen LN, Zhou H, Xi K, Cheng S, Liu Y, Fu Y, Ma X, Xu P, Ji SY, Wang WW, Shen DD, Zhang H, Shen Q, Chai R, Zhang M, Yang L, Han F, Mao C, Cai X, Zhang Y. Proton perception and activation of a proton-sensing GPCR. Mol Cell 2025; 85:1640-1657.e8. [PMID: 40215960 DOI: 10.1016/j.molcel.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/28/2025] [Indexed: 04/20/2025]
Abstract
Maintaining pH at cellular, tissular, and systemic levels is essential for human health. Proton-sensing GPCRs regulate physiological and pathological processes by sensing the extracellular acidity. However, the molecular mechanism of proton sensing and activation of these receptors remains elusive. Here, we present cryoelectron microscopy (cryo-EM) structures of human GPR4, a prototypical proton-sensing GPCR, in its inactive and active states. Our studies reveal that three extracellular histidine residues are crucial for proton sensing of human GPR4. The binding of protons induces substantial conformational changes in GPR4's ECLs, particularly in ECL2, which transforms from a helix-loop to a β-turn-β configuration. This transformation leads to the rearrangements of H-bond network and hydrophobic packing, relayed by non-canonical motifs to accommodate G proteins. Furthermore, the antagonist NE52-QQ57 hinders human GPR4 activation by preventing hydrophobic stacking rearrangement. Our findings provide a molecular framework for understanding the activation mechanism of a human proton-sensing GPCR, aiding future drug discovery.
Collapse
Affiliation(s)
- Li-Nan Chen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Zhou
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kun Xi
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shizhuo Cheng
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongfeng Liu
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yifan Fu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiangyu Ma
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Ping Xu
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Su-Yu Ji
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei-Wei Wang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dan-Dan Shen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huibing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingya Shen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Min Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Lin Yang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Chunyou Mao
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou 310016, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou 310016, China.
| | - Yan Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
3
|
Shore D, Griggs N, Graffeo V, Amin ARMR, Zha XM, Xu Y, McAleer JP. GPR68 limits the severity of chemical-induced oral epithelial dysplasia. Sci Rep 2023; 13:353. [PMID: 36611126 PMCID: PMC9825365 DOI: 10.1038/s41598-023-27546-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Head and neck cancer is the sixth most common malignancy, and there is an urgent need to identify physiological processes contributing to tumorigenesis. Extracellular acidification caused by aerobic glycolysis within tumor microenvironments can stimulate proton-sensing receptors. GPR68, or ovarian cancer G protein-coupled receptor 1, responds to extracellular acidity and is highly expressed in head and neck squamous cell carcinoma (HNSCC) as well as normal esophageal tissue. To study the role of GPR68 in oral dysplasia, wild-type and GPR68-/- mice were treated with 4-Nitroquinoline N-oxide (4NQO) in drinking water for 11-13 weeks, followed by normal water for 11-12 weeks. 4NQO treatment resulted in 45 percent of GPR68-/- mice developing severe dysplasia or squamous cell carcinoma compared to only 10.5 percent of GPR68+/+ mice. This correlated with increased frequencies of regulatory T cells in the spleens of male GPR68-/- mice. Dysplastic regions of the tongue had increased CD31 staining compared to normal regions in both GPR68-/- and GPR68+/+ mice, suggesting that angiogenesis was GPR68-independent. RNA knockdown studies using HNSCC cell lines demonstrated no direct effect of GPR68 on survival or growth. Overall, we demonstrate that GPR68-deficiency worsens the severity of chemical-induced oral dysplasia, suggesting a protective role for this gene in tumorigenesis.
Collapse
Affiliation(s)
- David Shore
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Nosakhere Griggs
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Vincent Graffeo
- grid.36425.360000 0001 2216 9681Marshall University Joan C. Edwards School of Medicine, Huntington, WV USA
| | - A. R. M. Ruhul Amin
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Xiang-ming Zha
- grid.266756.60000 0001 2179 926XUniversity of Missouri-Kansas City School of Pharmacy, Kansas City, MO USA
| | - Yan Xu
- grid.257413.60000 0001 2287 3919Indiana University School of Medicine, Indianapolis, IN USA
| | - Jeremy P. McAleer
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| |
Collapse
|
4
|
Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022; 14:cancers14102362. [PMID: 35625966 PMCID: PMC9140059 DOI: 10.3390/cancers14102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.
Collapse
|
5
|
Xue C, Shao S, Yan Y, Yang S, Bai S, Wu Y, Zhang J, Liu R, Ma H, Chai L, Zhang X, Ren J. Association between G-protein coupled receptor 4 expression and microvessel density, clinicopathological characteristics and survival in hepatocellular carcinoma. Oncol Lett 2020; 19:2609-2620. [PMID: 32218811 PMCID: PMC7068660 DOI: 10.3892/ol.2020.11366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/14/2019] [Indexed: 12/27/2022] Open
Abstract
G-protein coupled receptor 4 (GPR4) acts as a proton-sensing receptor and plays a role in regulating angiogenesis. Endoglin/CD105 is a marker of cell proliferation in vascular endothelial cells, particularly in tumor vasculature cells. Although there have been several studies investigating angiogenesis in hepatocellular carcinoma (HCC), none have investigated the association between GPR4 and microvessel density (MVD)-CD105 in this type of cancer. In the present study, CD105 and GPR4 were found to be expressed in benign and malignant liver tissues by immunofluorescence staining and laser confocal microscopy. Compared with levels in benign tissues, CD105 and GPR4 were highly expressed in neoplastic tissues. Furthermore, the average fluorescence intensity of GPR4 and MVD-CD105 was positively correlated. GPR4 and CD105 were found to be co-localized in the vascular endothelium in tumor tissues. Furthermore, the expression of GPR4 was higher in the marginal region of tumor tissues compared with the central region. These findings suggest that the expression of GPR4 in tumor microvessels in HCC may be implicated in tumor angiogenesis and development. Furthermore, the association between the expression of GPR4 and the clinicopathological features of patients with HCC further suggests a role for GPR4 in tumor angiogenesis and growth. Overall, these results suggest the potential of GPR4 as a prognostic factor and as an antiangiogenic target in patients with HCC.
Collapse
Affiliation(s)
- Chaofan Xue
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuai Shao
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yanli Yan
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Si Yang
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuheng Bai
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yinying Wu
- Department of Chemotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiangzhou Zhang
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Liu
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hailin Ma
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Linyan Chai
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaozhi Zhang
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Juan Ren
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
6
|
Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11111696. [PMID: 31683697 PMCID: PMC6896196 DOI: 10.3390/cancers11111696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Sphingosylphosphorylcholine (SPC) is a unique type of lysosphingolipid found in some diseases, and has been studied in cardiovascular, neurological, and inflammatory phenomena. In particular, SPC’s studies on cancer have been conducted mainly in terms of effects on cancer cells, and relatively little consideration has been given to aspects of tumor microenvironment. This review summarizes the effects of SPC on cancer and tumor microenvironment, and presents the results and prospects of modulators that regulate the various actions of SPC.
Collapse
|
7
|
Yu M, Cui R, Huang Y, Luo Y, Qin S, Zhong M. Increased proton-sensing receptor GPR4 signalling promotes colorectal cancer progression by activating the hippo pathway. EBioMedicine 2019; 48:264-276. [PMID: 31530502 PMCID: PMC6838423 DOI: 10.1016/j.ebiom.2019.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the high incidences tumours and is ranked second in cancer-related mortality. Even though great progress has been made, there are no effective therapeutic strategies for late stage and metastatic CRC patients. Acidity is one characteristic of the tumour microenvironment. However, how cancer cells respond to this acidic environment surrounding them remains largely unknown, especially in colorectal cancer. Methods Proton sensor receptor expression was analysed in GEO and TCGA datasets. The expression of GPR4 in CRC specimens was confirmed by western blotting and immunohistochemistry (IHC). The role of GPR4 in CRC progression was analysed both in vitro and in vivo. Pharmacological intervention, immunofluorescence and gene set enrichment analyses were performed to reveal the underlying molecular mechanisms of GPR4. Findings We found that GPR4 was upregulated in CRC samples. In addition, its high expression correlated with late stage tumours and poor overall survival in patients. Furthermore, loss-of-function assays proved that GPR4 promoted CRC carcinogenesis and metastatic ability. Mechanistically, GPR4 was activated by extracellular protons in the tumour microenvironment and enhanced RhoA activation and F-actin rearrangement, leading to LATS activity inhibition, YAP1 nuclear translocation and oncogene transcription. Interpretation The expression of GPR4 is upregulated in colorectal cancer and is associated with shorter overall survival time in CRC patients. These findings reveal the novel roles of GPR4 in CRC progression and suggest GPR4 might be a new therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Minhao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Ran Cui
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yizhou Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Shaolan Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
8
|
Velcicky J, Miltz W, Oberhauser B, Orain D, Vaupel A, Weigand K, Dawson King J, Littlewood-Evans A, Nash M, Feifel R, Loetscher P. Development of Selective, Orally Active GPR4 Antagonists with Modulatory Effects on Nociception, Inflammation, and Angiogenesis. J Med Chem 2017; 60:3672-3683. [PMID: 28445047 DOI: 10.1021/acs.jmedchem.6b01703] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel, selective, and efficacious GPR4 antagonist 13 was developed starting from lead compound 1a. While compound 1a showed promising efficacy in several disease models, its binding to a H3 receptor as well as a hERG channel prevented it from further development. Therefore, a new round of optimization addressing the key liabilities was performed and led to discovery of compound 13 with an improved profile. Compound 13 showed significant efficacy in the rat antigen induced arthritis as well as in the hyperalgesia and angiogenesis model at a well-tolerated dose of 30 mg/kg.
Collapse
Affiliation(s)
- Juraj Velcicky
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Wolfgang Miltz
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Berndt Oberhauser
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - David Orain
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Andrea Vaupel
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Klaus Weigand
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Janet Dawson King
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Amanda Littlewood-Evans
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Mark Nash
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Roland Feifel
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Pius Loetscher
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| |
Collapse
|
9
|
Liu H, Wu J, Liu XC, Wei N, Liu KL, Ma YH, Chang H, Zhou Q. Correlation between microvascular characteristics and the expression of MVD, IGF-1 and STAT3 in the development of colonic polyps carcinogenesis. Exp Ther Med 2017; 13:49-54. [PMID: 28123467 PMCID: PMC5245069 DOI: 10.3892/etm.2016.3927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the correlation between vascular characteristics under narrow band imaging (NBI) and the expression of angiogenic factors of colorectal carcinoma and adenoma, and to evaluate the feasibility of NBI in vivo visualizing angiogenesis. Patients with colorectal polyps, which were pathologically confirmed as early carcinoma and adenoma, were recruited and examined by NBI. The vascular pattern was classified into type I (invisible or faintly visible vasculature), type II (clearly visible microvasculature that is regularly arranged in a round, oval honeycomb-like pattern) and type III (clearly visible microvasculature that is irregularly arranged in size and caliber or has irregular winding). Immunohistochemical staining was performed by cluster of differentiation (CD)34, insulin-like growth factor (IGF)-1 and signal transducer and activator of transcription 3 (STAT3). The histological results were compared with the vascular pattern under NBI. Overall, 64 sites (15 adenocarcinomas, 29 adenomas and 20 normal) from 58 patients were recruited in the study and examined by NBI. A higher proportion of adenomas (82.1%, 23/28) and adenocarcinomas (66.7%, 10/15) had vascular patterns II and III, respectively. The expression of microvessel density (MVD)-CD34 and IGF-1 in normal mucosa compared with adenomas and adenocarcinomas was significantly different (P<0.0001 and P=0.0062, respectively). MVD-CD34, IGF-1 and STAT3 expression in the sites displayed with vascular patterns I, II, and III was different significantly (P<0.0001, P=0.0010 and P=0.0055, respectively). The spearman correlation coefficient between NBI vascular pattern and MVD-CD34, IGF-1 and STAT3 expression was 0.67, 0.41 and 0.40, respectively. In conclusion, vascular-pattern analysis and the use of an NBI system may be a promising tool for evaluating angiogenesis of colorectal lesions in real-time endoscopy.
Collapse
Affiliation(s)
- Hong Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Jing Wu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Xiang-Chun Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Nan Wei
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Kui-Liang Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Yan-Hui Ma
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Hong Chang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Quan Zhou
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
10
|
Ren J, Zhang Y, Cai H, Ma H, Zhao D, Zhang X, Li Z, Wang S, Wang J, Liu R, Li Y, Qian J, Wei H, Niu L, Liu Y, Xiao L, Ding M, Jiang S. Human GPR4 and the Notch signaling pathway in endothelial cell tube formation. Mol Med Rep 2016; 14:1235-40. [PMID: 27279286 DOI: 10.3892/mmr.2016.5380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 02/29/2016] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor 4 (GPR4) is hypothesized to function as a pH sensor and is important in the regulation of proliferation, migration and angiogenesis of vascular endothelial cells (ECs). Furthermore, the Notch signaling pathway is significant in the regulation of the angiogenic behavior of ECs. However, whether GPR4 regulates angiogenesis via the Notch signaling pathway remains unclear. The present study evaluated the effect of Notch signaling in human GPR4‑induced angiogenesis in HMEC‑1 cells. The results revealed that GPR4 increased Notch1 expression in a time‑dependent manner. In addition, the inhibition of Notch1 expression using small interfering RNA or the Notch receptor inhibitor, γ-secretase inhibitor I, significantly blocked GPR4‑induced HMEC‑1 tube formation and lymphocyte transendothelial migration. Furthermore, the inhibition of Notch1 blocked GPR4‑induced vascular endothelial growth factor and hypoxia-inducible factor 1α expression. Thus, it was demonstrated that GPR4 affects ECs by regulating Notch1, a function that may be important for physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Juan Ren
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yuelang Zhang
- Imaging Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui Cai
- Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hongbing Ma
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Dongli Zhao
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaozhi Zhang
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zongfang Li
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shufeng Wang
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiangsheng Wang
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Rui Liu
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yi Li
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiansheng Qian
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hongxia Wei
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Liying Niu
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan Liu
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lisha Xiao
- Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Muyang Ding
- Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shiwen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Macon, GA 31207, USA
| |
Collapse
|
11
|
Jing Z, Xu H, Chen X, Zhong Q, Huang J, Zhang Y, Guo W, Yang Z, Ding S, Chen P, Huang Z. The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer. PLoS One 2016; 11:e0152789. [PMID: 27078157 PMCID: PMC4831743 DOI: 10.1371/journal.pone.0152789] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/18/2016] [Indexed: 11/18/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is an aggressive disease with poor survival and is the sixth most common cancer worldwide. Gastroesophageal reflux is a common event in SCCHN patients. GPR4 is a proton-sensing G-protein coupled receptor, which can be activated by acidosis. The objective of this study was to explore the role of GPR4 in acid exposure and tumor angiogenesis in SCCHN. In this study, we confirmed that overexpressing GPR4 in SCCHN cells could increase the expression and secretion of IL6, IL8 and VEGFA at pH 5.9. This effect could be inhibited by SB203580 (a p38 inhibitor). Western blot analysis indicated that phosphorylation of p38 increased in GPR4 infected cells at pH 5.9, which could be inhibited by SB203580. In tube formation assay, HMEC-1 cells were incubated with conditioned medium (CM, pH 5.9, 6.5, 7.4) derived from control and GPR4 infected SCCHN cells. Tube length was significantly increased in HMEC-1 cells incubated with CM from GPR4 infected cells compared with control cells at pH5.9, which indicated the pro-angiogenic effect of GPR4 in acidic pH. The neutralizing antibodies of IL6, IL8 and VEGFA could inhibit tube formation of HMEC-1 cells. In vivo, the effect of GPR4 on angiogenesis was investigated with the chick chorioallantoic membrane (CAM) model. Control and GPR4 infected SCCHN cells were seeded onto the upper CAM surface (n = 5 in each group) and 5 μL DMEM/F12 (pH 5.9, 6.5, 7.4) was added to the surface of the cell every 24 h. Four days later, the upper CAM were harvested and the ratio of the vascular area to the CAM area was quantified using Image-Pro Plus 6.0 software. GPR4 infected cells could recruit more vascular than control cells at pH5.9. In conclusion, we suggested that GPR4 induces angiogenesis via GPR4-induced p38-mediated IL6, IL8 and VEGFA secretion at acidic extracellular pH in SCCHN.
Collapse
Affiliation(s)
- Zhibin Jing
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongbo Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qi Zhong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junwei Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zheng Yang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuo Ding
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ping Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhigang Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
12
|
Mochimaru Y, Azuma M, Oshima N, Ichijo Y, Satou K, Matsuda K, Asaoka Y, Nishina H, Nakakura T, Mogi C, Sato K, Okajima F, Tomura H. Extracellular acidification activates ovarian cancer G-protein-coupled receptor 1 and GPR4 homologs of zebra fish. Biochem Biophys Res Commun 2015; 457:493-9. [DOI: 10.1016/j.bbrc.2014.12.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/24/2014] [Indexed: 02/02/2023]
|